Anaerobic acidification of cheese-whey in the MBBR reactor

Detalhes bibliográficos
Autor(a) principal: Lanko, Iryna
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/7456
Resumo: In this study cheese-whey conversion into VFAs as a source for biopolymers production was investigated. Cheese-whey was chosen due to its high organic content being a by-product from the cheese production factory, as a part of valorisation methodology for industrial waste streams. Cheese-whey acidification process was used as an alternative to the waste treatment technologies. To study the acidification of cheese-whey, a set of experiments was carried out to produce short-chain volatile fatty acids (VFAs), in order to find out its ratio to the total chemical oxygen demand (tCOD) of feed present in the reactor. The proportional amounts of Acetic, Propionic and i-Butyric acids towards the rest of the VFAs were also important in order to evaluate the MBBR efficiency for different operational parameters such as hydraulic retention time (HRT), alkalinity and organic load rate applied (OLR). To fulfil these goals the mass balances of the system were performed. The maximum production rates of Acetic, Propionic and i-Butyric acids associated with simultaneous changes in OLR and alkalinity at a constant HRT of 12 h, were investigated (70% and 65% of total VFAs produced – at Phases 0 and 4, respectively). The degree of acidification of cheese-whey to the short-chain VFAs was about 33% and 27% of the influent COD concentration, at Phases 0 and 4, respectively. The optimum operational conditions under study where the maximum production rates of Acetic, Propionic and i-Butyric acids occurred were at an alkalinity of 3.6 gCaCO3/L and an OLR = 35 gCOD/L*d (Phase 4). At this optimum conditions for acids production, the average rate of COD removal was equal to 20% and the rate of methane production was equal to zero.
id RCAP_f17a2ce84a5278b3629f700e00c2650c
oai_identifier_str oai:ria.ua.pt:10773/7456
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Anaerobic acidification of cheese-whey in the MBBR reactorEngenharia do ambienteTratamento de resíduosIndústria de lacticíniosTratamento anaeróbicoAcidogéneseReactores biológicosIn this study cheese-whey conversion into VFAs as a source for biopolymers production was investigated. Cheese-whey was chosen due to its high organic content being a by-product from the cheese production factory, as a part of valorisation methodology for industrial waste streams. Cheese-whey acidification process was used as an alternative to the waste treatment technologies. To study the acidification of cheese-whey, a set of experiments was carried out to produce short-chain volatile fatty acids (VFAs), in order to find out its ratio to the total chemical oxygen demand (tCOD) of feed present in the reactor. The proportional amounts of Acetic, Propionic and i-Butyric acids towards the rest of the VFAs were also important in order to evaluate the MBBR efficiency for different operational parameters such as hydraulic retention time (HRT), alkalinity and organic load rate applied (OLR). To fulfil these goals the mass balances of the system were performed. The maximum production rates of Acetic, Propionic and i-Butyric acids associated with simultaneous changes in OLR and alkalinity at a constant HRT of 12 h, were investigated (70% and 65% of total VFAs produced – at Phases 0 and 4, respectively). The degree of acidification of cheese-whey to the short-chain VFAs was about 33% and 27% of the influent COD concentration, at Phases 0 and 4, respectively. The optimum operational conditions under study where the maximum production rates of Acetic, Propionic and i-Butyric acids occurred were at an alkalinity of 3.6 gCaCO3/L and an OLR = 35 gCOD/L*d (Phase 4). At this optimum conditions for acids production, the average rate of COD removal was equal to 20% and the rate of methane production was equal to zero.Universidade de Aveiro2013-11-27T08:46:03Z2011-07-22T00:00:00Z2011-07-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/7456engLanko, Irynainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:12:56Zoai:ria.ua.pt:10773/7456Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:45:08.011216Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Anaerobic acidification of cheese-whey in the MBBR reactor
title Anaerobic acidification of cheese-whey in the MBBR reactor
spellingShingle Anaerobic acidification of cheese-whey in the MBBR reactor
Lanko, Iryna
Engenharia do ambiente
Tratamento de resíduos
Indústria de lacticínios
Tratamento anaeróbico
Acidogénese
Reactores biológicos
title_short Anaerobic acidification of cheese-whey in the MBBR reactor
title_full Anaerobic acidification of cheese-whey in the MBBR reactor
title_fullStr Anaerobic acidification of cheese-whey in the MBBR reactor
title_full_unstemmed Anaerobic acidification of cheese-whey in the MBBR reactor
title_sort Anaerobic acidification of cheese-whey in the MBBR reactor
author Lanko, Iryna
author_facet Lanko, Iryna
author_role author
dc.contributor.author.fl_str_mv Lanko, Iryna
dc.subject.por.fl_str_mv Engenharia do ambiente
Tratamento de resíduos
Indústria de lacticínios
Tratamento anaeróbico
Acidogénese
Reactores biológicos
topic Engenharia do ambiente
Tratamento de resíduos
Indústria de lacticínios
Tratamento anaeróbico
Acidogénese
Reactores biológicos
description In this study cheese-whey conversion into VFAs as a source for biopolymers production was investigated. Cheese-whey was chosen due to its high organic content being a by-product from the cheese production factory, as a part of valorisation methodology for industrial waste streams. Cheese-whey acidification process was used as an alternative to the waste treatment technologies. To study the acidification of cheese-whey, a set of experiments was carried out to produce short-chain volatile fatty acids (VFAs), in order to find out its ratio to the total chemical oxygen demand (tCOD) of feed present in the reactor. The proportional amounts of Acetic, Propionic and i-Butyric acids towards the rest of the VFAs were also important in order to evaluate the MBBR efficiency for different operational parameters such as hydraulic retention time (HRT), alkalinity and organic load rate applied (OLR). To fulfil these goals the mass balances of the system were performed. The maximum production rates of Acetic, Propionic and i-Butyric acids associated with simultaneous changes in OLR and alkalinity at a constant HRT of 12 h, were investigated (70% and 65% of total VFAs produced – at Phases 0 and 4, respectively). The degree of acidification of cheese-whey to the short-chain VFAs was about 33% and 27% of the influent COD concentration, at Phases 0 and 4, respectively. The optimum operational conditions under study where the maximum production rates of Acetic, Propionic and i-Butyric acids occurred were at an alkalinity of 3.6 gCaCO3/L and an OLR = 35 gCOD/L*d (Phase 4). At this optimum conditions for acids production, the average rate of COD removal was equal to 20% and the rate of methane production was equal to zero.
publishDate 2011
dc.date.none.fl_str_mv 2011-07-22T00:00:00Z
2011-07-22
2013-11-27T08:46:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/7456
url http://hdl.handle.net/10773/7456
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137503673843712