Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures

Detalhes bibliográficos
Autor(a) principal: Maria Teresa De Risi
Data de Publicação: 2019
Outros Autores: André Furtado, Hugo Rodrigues, José Melo, Gerardo Verderame, António Arêde, Humberto Varum, Gaetano Manfredi
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/133962
Resumo: Past and more recent seismic events worldwide clearly showed that a crucial issue for lifesafety and loss reduction due to earthquakes for existing reinforced concrete (RC) buildings is related to the out-of-plane (OOP) collapse of infill masonry walls. In literature, few studies addressed this paramount topic, above all about the proposal of strengthening strategies to prevent the infills' collapse. This paper presents an experimental work about the assessment of possible strengthening solutions designed to mitigate or prevent the out-of-plane collapse of masonry infills in existing RC buildings. Three nominally identical full-scale one-bay-one-story RC frames were built and infilled with a thin masonry wall made up of horizontal hollow clay bricks. The first specimen was representative of the enclosure of a typical existing RC building in the Mediterranean region in its "as-built" condition. The remaining two specimens were strengthened against the out-of-plane collapse by means of two different strengthening techniques based on the application of innovative systems made up of high-ductility mortar plaster and fibre-reinforced polymer nets. All the tests consisted in the application of a semi-cyclic (loading-unloading-reloading) history of imposed displacements in the OOP direction by means of small pneumatic jacks through a uniform distributed load. Experimental results are shown in terms of OOP force-displacement responses, deformed shapes and damage evolution. In the end, the results of the tests are compared to assess the effectiveness of the selected strengthening techniques and to provide a support towards the choice of the best strategies for future further investigations and applications.
id RCAP_f1f660b395f339e1c54c89e34b5f339e
oai_identifier_str oai:repositorio-aberto.up.pt:10216/133962
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structuresEngenharia estrutural, Engenharia civilStructural engineering, Civil engineeringPast and more recent seismic events worldwide clearly showed that a crucial issue for lifesafety and loss reduction due to earthquakes for existing reinforced concrete (RC) buildings is related to the out-of-plane (OOP) collapse of infill masonry walls. In literature, few studies addressed this paramount topic, above all about the proposal of strengthening strategies to prevent the infills' collapse. This paper presents an experimental work about the assessment of possible strengthening solutions designed to mitigate or prevent the out-of-plane collapse of masonry infills in existing RC buildings. Three nominally identical full-scale one-bay-one-story RC frames were built and infilled with a thin masonry wall made up of horizontal hollow clay bricks. The first specimen was representative of the enclosure of a typical existing RC building in the Mediterranean region in its "as-built" condition. The remaining two specimens were strengthened against the out-of-plane collapse by means of two different strengthening techniques based on the application of innovative systems made up of high-ductility mortar plaster and fibre-reinforced polymer nets. All the tests consisted in the application of a semi-cyclic (loading-unloading-reloading) history of imposed displacements in the OOP direction by means of small pneumatic jacks through a uniform distributed load. Experimental results are shown in terms of OOP force-displacement responses, deformed shapes and damage evolution. In the end, the results of the tests are compared to assess the effectiveness of the selected strengthening techniques and to provide a support towards the choice of the best strategies for future further investigations and applications.20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/133962engMaria Teresa De RisiAndré FurtadoHugo RodriguesJosé MeloGerardo VerderameAntónio ArêdeHumberto VarumGaetano Manfrediinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:59:54Zoai:repositorio-aberto.up.pt:10216/133962Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:31:23.463191Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
title Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
spellingShingle Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
Maria Teresa De Risi
Engenharia estrutural, Engenharia civil
Structural engineering, Civil engineering
title_short Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
title_full Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
title_fullStr Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
title_full_unstemmed Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
title_sort Experimental assessment of strengthening strategies against the out-of-plane collapse of masonry infills in existing RC structures
author Maria Teresa De Risi
author_facet Maria Teresa De Risi
André Furtado
Hugo Rodrigues
José Melo
Gerardo Verderame
António Arêde
Humberto Varum
Gaetano Manfredi
author_role author
author2 André Furtado
Hugo Rodrigues
José Melo
Gerardo Verderame
António Arêde
Humberto Varum
Gaetano Manfredi
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Maria Teresa De Risi
André Furtado
Hugo Rodrigues
José Melo
Gerardo Verderame
António Arêde
Humberto Varum
Gaetano Manfredi
dc.subject.por.fl_str_mv Engenharia estrutural, Engenharia civil
Structural engineering, Civil engineering
topic Engenharia estrutural, Engenharia civil
Structural engineering, Civil engineering
description Past and more recent seismic events worldwide clearly showed that a crucial issue for lifesafety and loss reduction due to earthquakes for existing reinforced concrete (RC) buildings is related to the out-of-plane (OOP) collapse of infill masonry walls. In literature, few studies addressed this paramount topic, above all about the proposal of strengthening strategies to prevent the infills' collapse. This paper presents an experimental work about the assessment of possible strengthening solutions designed to mitigate or prevent the out-of-plane collapse of masonry infills in existing RC buildings. Three nominally identical full-scale one-bay-one-story RC frames were built and infilled with a thin masonry wall made up of horizontal hollow clay bricks. The first specimen was representative of the enclosure of a typical existing RC building in the Mediterranean region in its "as-built" condition. The remaining two specimens were strengthened against the out-of-plane collapse by means of two different strengthening techniques based on the application of innovative systems made up of high-ductility mortar plaster and fibre-reinforced polymer nets. All the tests consisted in the application of a semi-cyclic (loading-unloading-reloading) history of imposed displacements in the OOP direction by means of small pneumatic jacks through a uniform distributed load. Experimental results are shown in terms of OOP force-displacement responses, deformed shapes and damage evolution. In the end, the results of the tests are compared to assess the effectiveness of the selected strengthening techniques and to provide a support towards the choice of the best strategies for future further investigations and applications.
publishDate 2019
dc.date.none.fl_str_mv 2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/133962
url https://hdl.handle.net/10216/133962
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135623623213056