EasyBDI: automatic big data integration and high-level analytic queries

Detalhes bibliográficos
Autor(a) principal: Silva, Bruno José Pires
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/31215
Resumo: Abstract The emergence of new areas, such as the internet of things, which require access to the latest data for data analytics and decision-making environments, created constraints for the execution of analytical queries on traditional data warehouse architectures. In addition, the increase of semi-structure and unstructured data led to the creation of new databases to deal with these types of data, namely, NoSQL databases. This led to the information being stored in several different systems, each with more suitable characteristics for different use cases, which created difficulties in accessing data that are now spread across various systems with different models and characteristics. In this work, a system capable of performing analytical queries in real time on distributed and heterogeneous data sources is proposed: EasyBDI. The system is capable of integrating data logically, without materializing data, creating an overview of the data, thus offering an abstraction over the distribution and heterogeneity of data sources. Queries are executed interactively on data sources, which means that the most recent data will always be used in queries. This system presents a user interface that helps in the configuration of data sources, and automatically proposes a global schema that presents a generic and simplified view of the data, which can be modified by the user. The system allows the creation of multiple star schemas from the global schema. Finally, analytical queries are also made through a user interface that uses drag-and-drop elements. EasyBDI is able to solve recent problems by using recent solutions, hiding the details of several data sources, at the same time that allows users with less knowledge of databases to also be able to perform real-time analytical queries over distributed and heterogeneous data sources.
id RCAP_f1f8a6782e9e9b38a2b213ac9fdb026c
oai_identifier_str oai:ria.ua.pt:10773/31215
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling EasyBDI: automatic big data integration and high-level analytic queriesBig dataData integrationDistributed databasesHeterogenous databasesLogical data integrationOLAPData warehousingNear real-time dataAbstract The emergence of new areas, such as the internet of things, which require access to the latest data for data analytics and decision-making environments, created constraints for the execution of analytical queries on traditional data warehouse architectures. In addition, the increase of semi-structure and unstructured data led to the creation of new databases to deal with these types of data, namely, NoSQL databases. This led to the information being stored in several different systems, each with more suitable characteristics for different use cases, which created difficulties in accessing data that are now spread across various systems with different models and characteristics. In this work, a system capable of performing analytical queries in real time on distributed and heterogeneous data sources is proposed: EasyBDI. The system is capable of integrating data logically, without materializing data, creating an overview of the data, thus offering an abstraction over the distribution and heterogeneity of data sources. Queries are executed interactively on data sources, which means that the most recent data will always be used in queries. This system presents a user interface that helps in the configuration of data sources, and automatically proposes a global schema that presents a generic and simplified view of the data, which can be modified by the user. The system allows the creation of multiple star schemas from the global schema. Finally, analytical queries are also made through a user interface that uses drag-and-drop elements. EasyBDI is able to solve recent problems by using recent solutions, hiding the details of several data sources, at the same time that allows users with less knowledge of databases to also be able to perform real-time analytical queries over distributed and heterogeneous data sources.O aparecimento de novas áreas, como a Internet das Coisas, que requerem o acesso aos dados mais recentes para ambientes de tomada de decisão, criou constrangimentos na execução de consultas analíticas usando as arquiteturas tradicionais de data warehouses. Adicionalmente, o aumento de dados semi-estruturados e não estruturados levou a que outras bases de dados fossem criadas para lidar com esse tipo de dados, nomeadamente bases NoSQL. Isto levou a que a informação seja armazenada em sistemas com características distintas e especializados em diferentes casos de uso, criando dificuldades no acesso aos dados que estão agora espalhados por vários sistemas com modelos e características distintas. Neste trabalho, propõe-se um sistema capaz de efetuar consultas analíticas em tempo real sobre fontes de dados distribuídas e heterogéneas: o EasyBDI. O sistema é capaz de integrar dados logicamente, sem materializar os dados, criando uma vista geral dos dados que oferece uma abstração sobre a distribuição e heterogeneidade das fontes de dados. As consultas são executadas interativamente nas fontes de dados, o que significa que os dados mais recentes serão sempre usados nas consultas. Este sistema apresenta uma interface de utilizador que ajuda na configuração de fontes de dados, e propõe automaticamente um esquema global que apresenta a vista genérica e simplificada dos dados, podendo ser modificado pelo utilizador. O sistema permite a criação de múltiplos esquema em estrela a partir do esquema global. Por fim, a realização de consultas analíticas é feita também através de uma interface de utilizador que recorre ao drag-and-drop de elementos. O EasyBDI é capaz de resolver problemas recentes, utilizando também soluções recentes, escondendo os detalhes de diversas fontes de dados, ao mesmo tempo que permite que utilizadores com menos conhecimentos em bases de dados possam também realizar consultas analíticas em tempo-real sobre fontes de dados distribuídas e heterogéneas.2021-04-21T13:56:42Z2021-02-02T00:00:00Z2021-02-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/31215engSilva, Bruno José Piresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:00:16Zoai:ria.ua.pt:10773/31215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:09.337908Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv EasyBDI: automatic big data integration and high-level analytic queries
title EasyBDI: automatic big data integration and high-level analytic queries
spellingShingle EasyBDI: automatic big data integration and high-level analytic queries
Silva, Bruno José Pires
Big data
Data integration
Distributed databases
Heterogenous databases
Logical data integration
OLAP
Data warehousing
Near real-time data
title_short EasyBDI: automatic big data integration and high-level analytic queries
title_full EasyBDI: automatic big data integration and high-level analytic queries
title_fullStr EasyBDI: automatic big data integration and high-level analytic queries
title_full_unstemmed EasyBDI: automatic big data integration and high-level analytic queries
title_sort EasyBDI: automatic big data integration and high-level analytic queries
author Silva, Bruno José Pires
author_facet Silva, Bruno José Pires
author_role author
dc.contributor.author.fl_str_mv Silva, Bruno José Pires
dc.subject.por.fl_str_mv Big data
Data integration
Distributed databases
Heterogenous databases
Logical data integration
OLAP
Data warehousing
Near real-time data
topic Big data
Data integration
Distributed databases
Heterogenous databases
Logical data integration
OLAP
Data warehousing
Near real-time data
description Abstract The emergence of new areas, such as the internet of things, which require access to the latest data for data analytics and decision-making environments, created constraints for the execution of analytical queries on traditional data warehouse architectures. In addition, the increase of semi-structure and unstructured data led to the creation of new databases to deal with these types of data, namely, NoSQL databases. This led to the information being stored in several different systems, each with more suitable characteristics for different use cases, which created difficulties in accessing data that are now spread across various systems with different models and characteristics. In this work, a system capable of performing analytical queries in real time on distributed and heterogeneous data sources is proposed: EasyBDI. The system is capable of integrating data logically, without materializing data, creating an overview of the data, thus offering an abstraction over the distribution and heterogeneity of data sources. Queries are executed interactively on data sources, which means that the most recent data will always be used in queries. This system presents a user interface that helps in the configuration of data sources, and automatically proposes a global schema that presents a generic and simplified view of the data, which can be modified by the user. The system allows the creation of multiple star schemas from the global schema. Finally, analytical queries are also made through a user interface that uses drag-and-drop elements. EasyBDI is able to solve recent problems by using recent solutions, hiding the details of several data sources, at the same time that allows users with less knowledge of databases to also be able to perform real-time analytical queries over distributed and heterogeneous data sources.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-21T13:56:42Z
2021-02-02T00:00:00Z
2021-02-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/31215
url http://hdl.handle.net/10773/31215
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137686948151296