Higher order boundary value problems with φ-Laplacian and functional boundary conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/2493 |
Resumo: | We study the existence of solutions of the boundary value problem φ(u^(n−1)(t))′ + f (t, u(t), u′(t), . . . , u^(n−1)(t))= 0, t ∈ (0, 1), g_i (u, u′, . . . , u^(n−1), u^(i)(0))= 0, i = 0, . . . , n − 2, g_n−1 (u, u′, . . . , u^(n−1), u^(n−2)(1))= 0, where n ≥ 2, φ and g_i, i = 0, . . . , n − 1, are continuous, and f is a Carathéodory function. We obtain an existence criterion based on the existence of a pair of coupled lower and upper solutions.Wealso apply our existence theorem to derive some explicit conditions for the existence of a solution of a special case of the above problem. In our problem, both the differential equation and the boundary conditions may have dependence on all lower order derivatives of the unknown function, and many boundary value problems with various boundary conditions, studied extensively in the literature, are special cases of our problem. Consequently, our results improve and cover a number of known results in the literature. Examples are given to illustrate the applicability of our theorems. |
id |
RCAP_f2332bef949985a7ab98c96d27627673 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/2493 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Higher order boundary value problems with φ-Laplacian and functional boundary conditionsBoundary value problemsFunctional boundary conditionsWe study the existence of solutions of the boundary value problem φ(u^(n−1)(t))′ + f (t, u(t), u′(t), . . . , u^(n−1)(t))= 0, t ∈ (0, 1), g_i (u, u′, . . . , u^(n−1), u^(i)(0))= 0, i = 0, . . . , n − 2, g_n−1 (u, u′, . . . , u^(n−1), u^(n−2)(1))= 0, where n ≥ 2, φ and g_i, i = 0, . . . , n − 1, are continuous, and f is a Carathéodory function. We obtain an existence criterion based on the existence of a pair of coupled lower and upper solutions.Wealso apply our existence theorem to derive some explicit conditions for the existence of a solution of a special case of the above problem. In our problem, both the differential equation and the boundary conditions may have dependence on all lower order derivatives of the unknown function, and many boundary value problems with various boundary conditions, studied extensively in the literature, are special cases of our problem. Consequently, our results improve and cover a number of known results in the literature. Examples are given to illustrate the applicability of our theorems.Elsevier2011-01-24T16:37:49Z2011-01-242011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article490616 bytesapplication/pdfhttp://hdl.handle.net/10174/2493http://hdl.handle.net/10174/2493engpag 236–249Computers and Mathematics with Applications61livreMatfminhos@uevora.ptjohn-graef@utc.edulingju-kong@utc.edu334Minhós, FelizGraef, JohnKong, Lingjuinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:02Zoai:dspace.uevora.pt:10174/2493Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:12.213262Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
title |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
spellingShingle |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions Minhós, Feliz Boundary value problems Functional boundary conditions |
title_short |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
title_full |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
title_fullStr |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
title_full_unstemmed |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
title_sort |
Higher order boundary value problems with φ-Laplacian and functional boundary conditions |
author |
Minhós, Feliz |
author_facet |
Minhós, Feliz Graef, John Kong, Lingju |
author_role |
author |
author2 |
Graef, John Kong, Lingju |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Minhós, Feliz Graef, John Kong, Lingju |
dc.subject.por.fl_str_mv |
Boundary value problems Functional boundary conditions |
topic |
Boundary value problems Functional boundary conditions |
description |
We study the existence of solutions of the boundary value problem φ(u^(n−1)(t))′ + f (t, u(t), u′(t), . . . , u^(n−1)(t))= 0, t ∈ (0, 1), g_i (u, u′, . . . , u^(n−1), u^(i)(0))= 0, i = 0, . . . , n − 2, g_n−1 (u, u′, . . . , u^(n−1), u^(n−2)(1))= 0, where n ≥ 2, φ and g_i, i = 0, . . . , n − 1, are continuous, and f is a Carathéodory function. We obtain an existence criterion based on the existence of a pair of coupled lower and upper solutions.Wealso apply our existence theorem to derive some explicit conditions for the existence of a solution of a special case of the above problem. In our problem, both the differential equation and the boundary conditions may have dependence on all lower order derivatives of the unknown function, and many boundary value problems with various boundary conditions, studied extensively in the literature, are special cases of our problem. Consequently, our results improve and cover a number of known results in the literature. Examples are given to illustrate the applicability of our theorems. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-24T16:37:49Z 2011-01-24 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/2493 http://hdl.handle.net/10174/2493 |
url |
http://hdl.handle.net/10174/2493 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
pag 236–249 Computers and Mathematics with Applications 61 livre Mat fminhos@uevora.pt john-graef@utc.edu lingju-kong@utc.edu 334 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
490616 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136465197727744 |