Higher order boundary value problems with φ-Laplacian and functional boundary conditions

Detalhes bibliográficos
Autor(a) principal: Minhós, Feliz
Data de Publicação: 2011
Outros Autores: Graef, John, Kong, Lingju
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/2493
Resumo: We study the existence of solutions of the boundary value problem φ(u^(n−1)(t))′ + f (t, u(t), u′(t), . . . , u^(n−1)(t))= 0, t ∈ (0, 1), g_i (u, u′, . . . , u^(n−1), u^(i)(0))= 0, i = 0, . . . , n − 2, g_n−1 (u, u′, . . . , u^(n−1), u^(n−2)(1))= 0, where n ≥ 2, φ and g_i, i = 0, . . . , n − 1, are continuous, and f is a Carathéodory function. We obtain an existence criterion based on the existence of a pair of coupled lower and upper solutions.Wealso apply our existence theorem to derive some explicit conditions for the existence of a solution of a special case of the above problem. In our problem, both the differential equation and the boundary conditions may have dependence on all lower order derivatives of the unknown function, and many boundary value problems with various boundary conditions, studied extensively in the literature, are special cases of our problem. Consequently, our results improve and cover a number of known results in the literature. Examples are given to illustrate the applicability of our theorems.
id RCAP_f2332bef949985a7ab98c96d27627673
oai_identifier_str oai:dspace.uevora.pt:10174/2493
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Higher order boundary value problems with φ-Laplacian and functional boundary conditionsBoundary value problemsFunctional boundary conditionsWe study the existence of solutions of the boundary value problem φ(u^(n−1)(t))′ + f (t, u(t), u′(t), . . . , u^(n−1)(t))= 0, t ∈ (0, 1), g_i (u, u′, . . . , u^(n−1), u^(i)(0))= 0, i = 0, . . . , n − 2, g_n−1 (u, u′, . . . , u^(n−1), u^(n−2)(1))= 0, where n ≥ 2, φ and g_i, i = 0, . . . , n − 1, are continuous, and f is a Carathéodory function. We obtain an existence criterion based on the existence of a pair of coupled lower and upper solutions.Wealso apply our existence theorem to derive some explicit conditions for the existence of a solution of a special case of the above problem. In our problem, both the differential equation and the boundary conditions may have dependence on all lower order derivatives of the unknown function, and many boundary value problems with various boundary conditions, studied extensively in the literature, are special cases of our problem. Consequently, our results improve and cover a number of known results in the literature. Examples are given to illustrate the applicability of our theorems.Elsevier2011-01-24T16:37:49Z2011-01-242011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article490616 bytesapplication/pdfhttp://hdl.handle.net/10174/2493http://hdl.handle.net/10174/2493engpag 236–249Computers and Mathematics with Applications61livreMatfminhos@uevora.ptjohn-graef@utc.edulingju-kong@utc.edu334Minhós, FelizGraef, JohnKong, Lingjuinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:02Zoai:dspace.uevora.pt:10174/2493Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:12.213262Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Higher order boundary value problems with φ-Laplacian and functional boundary conditions
title Higher order boundary value problems with φ-Laplacian and functional boundary conditions
spellingShingle Higher order boundary value problems with φ-Laplacian and functional boundary conditions
Minhós, Feliz
Boundary value problems
Functional boundary conditions
title_short Higher order boundary value problems with φ-Laplacian and functional boundary conditions
title_full Higher order boundary value problems with φ-Laplacian and functional boundary conditions
title_fullStr Higher order boundary value problems with φ-Laplacian and functional boundary conditions
title_full_unstemmed Higher order boundary value problems with φ-Laplacian and functional boundary conditions
title_sort Higher order boundary value problems with φ-Laplacian and functional boundary conditions
author Minhós, Feliz
author_facet Minhós, Feliz
Graef, John
Kong, Lingju
author_role author
author2 Graef, John
Kong, Lingju
author2_role author
author
dc.contributor.author.fl_str_mv Minhós, Feliz
Graef, John
Kong, Lingju
dc.subject.por.fl_str_mv Boundary value problems
Functional boundary conditions
topic Boundary value problems
Functional boundary conditions
description We study the existence of solutions of the boundary value problem φ(u^(n−1)(t))′ + f (t, u(t), u′(t), . . . , u^(n−1)(t))= 0, t ∈ (0, 1), g_i (u, u′, . . . , u^(n−1), u^(i)(0))= 0, i = 0, . . . , n − 2, g_n−1 (u, u′, . . . , u^(n−1), u^(n−2)(1))= 0, where n ≥ 2, φ and g_i, i = 0, . . . , n − 1, are continuous, and f is a Carathéodory function. We obtain an existence criterion based on the existence of a pair of coupled lower and upper solutions.Wealso apply our existence theorem to derive some explicit conditions for the existence of a solution of a special case of the above problem. In our problem, both the differential equation and the boundary conditions may have dependence on all lower order derivatives of the unknown function, and many boundary value problems with various boundary conditions, studied extensively in the literature, are special cases of our problem. Consequently, our results improve and cover a number of known results in the literature. Examples are given to illustrate the applicability of our theorems.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-24T16:37:49Z
2011-01-24
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/2493
http://hdl.handle.net/10174/2493
url http://hdl.handle.net/10174/2493
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv pag 236–249
Computers and Mathematics with Applications
61
livre
Mat
fminhos@uevora.pt
john-graef@utc.edu
lingju-kong@utc.edu
334
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 490616 bytes
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136465197727744