Translational joints with clearance in rigid multibody systems

Detalhes bibliográficos
Autor(a) principal: Flores, Paulo
Data de Publicação: 2008
Outros Autores: Ambrósio, Jorge, Claro, José Carlos Pimenta, Lankarani, H. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/23276
Resumo: A computational methodology for dynamic description of rigid multibody systems with translational clearance joints is presented and discussed in this work. Over the last years, extensive work has been done to study the dynamic effect of the revolute joints with clearance in multibody systems, in contrast with the little work devoted to model translational joints with clearance. In a joint with translation clearance there are many possible ways to set the physical configuration between the slider and guide, namely: (i) no contact between the two elements, (ii) one corner of the slider in contact with the guide surface, (iii) two adjacent slider corners in contact with the guide surface, (iv) two opposite slider corners in contact with the guide surfaces. The proposed methodology takes into account these four different situations. The conditions for switching from one case to another depend on the system dynamics configuration. The existence of a clearance in a translational joint removes two kinematic constraints from a planar system and introduces two extra degrees of freedom in the system. Thus, a translational clearance joint does not constrain any degree of freedom of the mechanical system but it imposes some restrictions on the slider motion inside the guide limits. When the slider reaches the guide surfaces an impact occurs and the dynamic response of the joint is modeled by contact-impact forces. These forces are evaluated here with continuous contact force law together with a dissipative friction force model. The contact-impact forces are introduced into the system’s equations of motion as external generalized forces. The proposed methodology is applied to a planar multibody mechanical system with a translational clearance joint in order to demonstrate its features.
id RCAP_f23de6bbd0895c15703a4cf9f3061106
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/23276
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Translational joints with clearance in rigid multibody systemsClearance jointsMultibody dynamicsContact-impact forcesScience & TechnologyA computational methodology for dynamic description of rigid multibody systems with translational clearance joints is presented and discussed in this work. Over the last years, extensive work has been done to study the dynamic effect of the revolute joints with clearance in multibody systems, in contrast with the little work devoted to model translational joints with clearance. In a joint with translation clearance there are many possible ways to set the physical configuration between the slider and guide, namely: (i) no contact between the two elements, (ii) one corner of the slider in contact with the guide surface, (iii) two adjacent slider corners in contact with the guide surface, (iv) two opposite slider corners in contact with the guide surfaces. The proposed methodology takes into account these four different situations. The conditions for switching from one case to another depend on the system dynamics configuration. The existence of a clearance in a translational joint removes two kinematic constraints from a planar system and introduces two extra degrees of freedom in the system. Thus, a translational clearance joint does not constrain any degree of freedom of the mechanical system but it imposes some restrictions on the slider motion inside the guide limits. When the slider reaches the guide surfaces an impact occurs and the dynamic response of the joint is modeled by contact-impact forces. These forces are evaluated here with continuous contact force law together with a dissipative friction force model. The contact-impact forces are introduced into the system’s equations of motion as external generalized forces. The proposed methodology is applied to a planar multibody mechanical system with a translational clearance joint in order to demonstrate its features.Fundação para a Ciência e a Tecnologia (FCT)ASMEUniversidade do MinhoFlores, PauloAmbrósio, JorgeClaro, José Carlos PimentaLankarani, H. M.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/23276eng1555-142310.1115/1.2802113www.asme.orginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T11:58:35Zoai:repositorium.sdum.uminho.pt:1822/23276Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:48:19.867848Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Translational joints with clearance in rigid multibody systems
title Translational joints with clearance in rigid multibody systems
spellingShingle Translational joints with clearance in rigid multibody systems
Flores, Paulo
Clearance joints
Multibody dynamics
Contact-impact forces
Science & Technology
title_short Translational joints with clearance in rigid multibody systems
title_full Translational joints with clearance in rigid multibody systems
title_fullStr Translational joints with clearance in rigid multibody systems
title_full_unstemmed Translational joints with clearance in rigid multibody systems
title_sort Translational joints with clearance in rigid multibody systems
author Flores, Paulo
author_facet Flores, Paulo
Ambrósio, Jorge
Claro, José Carlos Pimenta
Lankarani, H. M.
author_role author
author2 Ambrósio, Jorge
Claro, José Carlos Pimenta
Lankarani, H. M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Flores, Paulo
Ambrósio, Jorge
Claro, José Carlos Pimenta
Lankarani, H. M.
dc.subject.por.fl_str_mv Clearance joints
Multibody dynamics
Contact-impact forces
Science & Technology
topic Clearance joints
Multibody dynamics
Contact-impact forces
Science & Technology
description A computational methodology for dynamic description of rigid multibody systems with translational clearance joints is presented and discussed in this work. Over the last years, extensive work has been done to study the dynamic effect of the revolute joints with clearance in multibody systems, in contrast with the little work devoted to model translational joints with clearance. In a joint with translation clearance there are many possible ways to set the physical configuration between the slider and guide, namely: (i) no contact between the two elements, (ii) one corner of the slider in contact with the guide surface, (iii) two adjacent slider corners in contact with the guide surface, (iv) two opposite slider corners in contact with the guide surfaces. The proposed methodology takes into account these four different situations. The conditions for switching from one case to another depend on the system dynamics configuration. The existence of a clearance in a translational joint removes two kinematic constraints from a planar system and introduces two extra degrees of freedom in the system. Thus, a translational clearance joint does not constrain any degree of freedom of the mechanical system but it imposes some restrictions on the slider motion inside the guide limits. When the slider reaches the guide surfaces an impact occurs and the dynamic response of the joint is modeled by contact-impact forces. These forces are evaluated here with continuous contact force law together with a dissipative friction force model. The contact-impact forces are introduced into the system’s equations of motion as external generalized forces. The proposed methodology is applied to a planar multibody mechanical system with a translational clearance joint in order to demonstrate its features.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/23276
url http://hdl.handle.net/1822/23276
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1555-1423
10.1115/1.2802113
www.asme.org
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ASME
publisher.none.fl_str_mv ASME
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132244223197184