Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction

Detalhes bibliográficos
Autor(a) principal: Florindo, Ricardo Jorge Pinto
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/142468
Resumo: Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science
id RCAP_f2471156cb169a57882900c25671d813
oai_identifier_str oai:run.unl.pt:10362/142468
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer SatisfactionHealthcareInsuranceCustomer SatisfactionMultilabel ClassificationMultilabel RankingCost EstimationInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceListening to clients ‘needs is key to thrive in competitive markets, and empowering clients with the information they seek can help increase customer satisfaction and retention, generating a positive impact in companies bottom lines. Having this in mind, information easily accessed by customers, regarding medical consultations and its associated costs, was provided to the customers of one of the health insurance top players in Portugal, during a 12-month internship. Advanced Analytics and Machine Learning techniques were utilized to find the most common medical exams performed during a medical consultation, through the means of multilabel classification and ranking methods. Descriptive statistics helped estimate the total cost of consultations and calculate customers savings accordingly with their insurance plan. From an insurance perspective, this information will be utilized by the customer support teams and disseminated through the proper channels to inform clients on how their insurance operates.Jesus, Frederico Miguel Campos Cruz Ribeiro deRUNFlorindo, Ricardo Jorge Pinto2022-07-27T10:33:35Z2022-07-192022-07-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/142468TID:203044703enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:20:11Zoai:run.unl.pt:10362/142468Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:20.041331Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
title Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
spellingShingle Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
Florindo, Ricardo Jorge Pinto
Healthcare
Insurance
Customer Satisfaction
Multilabel Classification
Multilabel Ranking
Cost Estimation
title_short Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
title_full Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
title_fullStr Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
title_full_unstemmed Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
title_sort Medical Acts Ranking and Classification in Health Insurance: a Multilabel approach to increase Customer Satisfaction
author Florindo, Ricardo Jorge Pinto
author_facet Florindo, Ricardo Jorge Pinto
author_role author
dc.contributor.none.fl_str_mv Jesus, Frederico Miguel Campos Cruz Ribeiro de
RUN
dc.contributor.author.fl_str_mv Florindo, Ricardo Jorge Pinto
dc.subject.por.fl_str_mv Healthcare
Insurance
Customer Satisfaction
Multilabel Classification
Multilabel Ranking
Cost Estimation
topic Healthcare
Insurance
Customer Satisfaction
Multilabel Classification
Multilabel Ranking
Cost Estimation
description Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science
publishDate 2022
dc.date.none.fl_str_mv 2022-07-27T10:33:35Z
2022-07-19
2022-07-19T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/142468
TID:203044703
url http://hdl.handle.net/10362/142468
identifier_str_mv TID:203044703
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138100148961280