A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/12529 http://dx.doi.org/10.3390/agriculture11070619 |
Resumo: | <jats:p>Spatial and temporal variability characterization in Precision Agriculture (PA) practices is often accomplished by proximity data gathering devices, which acquire data from a wide variety of sensors installed within the vicinity of crops. Proximity data acquisition usually depends on a hardware solution to which some sensors can be coupled, managed by a software that may (or may not) store, process and send acquired data to a back-end using some communication protocol. The sheer number of both proprietary and open hardware solutions, together with the diversity and characteristics of available sensors, is enough to deem the task of designing a data acquisition device complex. Factoring in the harsh operational context, the multiple DIY solutions presented by an active online community, available in-field power approaches and the different communication protocols, each proximity monitoring solution can be regarded as singular. Data acquisition devices should be increasingly flexible, not only by supporting a large number of heterogeneous sensors, but also by being able to resort to different communication protocols, depending on both the operational and functional contexts in which they are deployed. Furthermore, these small and unattended devices need to be sufficiently robust and cost-effective to allow greater in-field measurement granularity 365 days/year. This paper presents a low-cost, flexible and robust data acquisition device that can be deployed in different operational contexts, as it also supports three different communication technologies: IEEE 802.15.4/ZigBee, LoRa/LoRaWAN and GRPS. Software and hardware features, suitable for using heat pulse methods to measure sap flow, leaf wetness sensors and others are embedded. Its power consumption is of only 83 µA during sleep mode and the cost of the basic unit was kept below the EUR 100 limit. In-field continuous evaluation over the past three years prove that the proposed solution—SPWAS’21—is not only reliable but also represents a robust and low-cost data acquisition device capable of gathering different parameters of interest in PA practices.</jats:p> |
id |
RCAP_f288da47e6fce2628da051e3ae660ff0 |
---|---|
oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/12529 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices<jats:p>Spatial and temporal variability characterization in Precision Agriculture (PA) practices is often accomplished by proximity data gathering devices, which acquire data from a wide variety of sensors installed within the vicinity of crops. Proximity data acquisition usually depends on a hardware solution to which some sensors can be coupled, managed by a software that may (or may not) store, process and send acquired data to a back-end using some communication protocol. The sheer number of both proprietary and open hardware solutions, together with the diversity and characteristics of available sensors, is enough to deem the task of designing a data acquisition device complex. Factoring in the harsh operational context, the multiple DIY solutions presented by an active online community, available in-field power approaches and the different communication protocols, each proximity monitoring solution can be regarded as singular. Data acquisition devices should be increasingly flexible, not only by supporting a large number of heterogeneous sensors, but also by being able to resort to different communication protocols, depending on both the operational and functional contexts in which they are deployed. Furthermore, these small and unattended devices need to be sufficiently robust and cost-effective to allow greater in-field measurement granularity 365 days/year. This paper presents a low-cost, flexible and robust data acquisition device that can be deployed in different operational contexts, as it also supports three different communication technologies: IEEE 802.15.4/ZigBee, LoRa/LoRaWAN and GRPS. Software and hardware features, suitable for using heat pulse methods to measure sap flow, leaf wetness sensors and others are embedded. Its power consumption is of only 83 µA during sleep mode and the cost of the basic unit was kept below the EUR 100 limit. In-field continuous evaluation over the past three years prove that the proposed solution—SPWAS’21—is not only reliable but also represents a robust and low-cost data acquisition device capable of gathering different parameters of interest in PA practices.</jats:p>2021-09-09T13:53:36Z2021-01-01T00:00:00Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/12529http://dx.doi.org/10.3390/agriculture11070619engMorais,REmanuel Peres CorreiaSousa,JJSilva,NSilva,RMendes,Jinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:19:46Zoai:repositorio.inesctec.pt:123456789/12529Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:52:11.911888Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
title |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
spellingShingle |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices Morais,R |
title_short |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
title_full |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
title_fullStr |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
title_full_unstemmed |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
title_sort |
A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices |
author |
Morais,R |
author_facet |
Morais,R Emanuel Peres Correia Sousa,JJ Silva,N Silva,R Mendes,J |
author_role |
author |
author2 |
Emanuel Peres Correia Sousa,JJ Silva,N Silva,R Mendes,J |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Morais,R Emanuel Peres Correia Sousa,JJ Silva,N Silva,R Mendes,J |
description |
<jats:p>Spatial and temporal variability characterization in Precision Agriculture (PA) practices is often accomplished by proximity data gathering devices, which acquire data from a wide variety of sensors installed within the vicinity of crops. Proximity data acquisition usually depends on a hardware solution to which some sensors can be coupled, managed by a software that may (or may not) store, process and send acquired data to a back-end using some communication protocol. The sheer number of both proprietary and open hardware solutions, together with the diversity and characteristics of available sensors, is enough to deem the task of designing a data acquisition device complex. Factoring in the harsh operational context, the multiple DIY solutions presented by an active online community, available in-field power approaches and the different communication protocols, each proximity monitoring solution can be regarded as singular. Data acquisition devices should be increasingly flexible, not only by supporting a large number of heterogeneous sensors, but also by being able to resort to different communication protocols, depending on both the operational and functional contexts in which they are deployed. Furthermore, these small and unattended devices need to be sufficiently robust and cost-effective to allow greater in-field measurement granularity 365 days/year. This paper presents a low-cost, flexible and robust data acquisition device that can be deployed in different operational contexts, as it also supports three different communication technologies: IEEE 802.15.4/ZigBee, LoRa/LoRaWAN and GRPS. Software and hardware features, suitable for using heat pulse methods to measure sap flow, leaf wetness sensors and others are embedded. Its power consumption is of only 83 µA during sleep mode and the cost of the basic unit was kept below the EUR 100 limit. In-field continuous evaluation over the past three years prove that the proposed solution—SPWAS’21—is not only reliable but also represents a robust and low-cost data acquisition device capable of gathering different parameters of interest in PA practices.</jats:p> |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-09T13:53:36Z 2021-01-01T00:00:00Z 2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/12529 http://dx.doi.org/10.3390/agriculture11070619 |
url |
http://repositorio.inesctec.pt/handle/123456789/12529 http://dx.doi.org/10.3390/agriculture11070619 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131598616002560 |