Attention Mechanisms in the Classification of Histological Images

Detalhes bibliográficos
Autor(a) principal: Gomes, Mário Alexandre Neves
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/148925
Resumo: Recently, there has been an increase in the number of medical exams prescribed by medical doctors, not only to diagnose but also to keep track of the evolution of pathologies. In this sense, one of the medical specialties where the mentioned increase in the prescription rate has been observed is oncology. In this regard, not only to efficiently diagnose but also to monitor the evolution of the mentioned diseases, CT (Computed Tomography) scans, MRIs (Magnetic Resonance Imaging), and Biopsies are imaging techniques commonly used. After the exams are performed and the results retrieved by the respective health professionals, their analysis and interpretation are mandatory. This process, carried out by medical experts, is usually a time-consuming and tiring task. In this sense and to reduce the workload of these experts and support decision making, the research community start proposing several computer-aided systems, whose primary goal is to efficiently distinguish between healthy images and tumoral ones. Despite the success achieved by these methodologies, it become evident that the distinction of the two mentioned image categories (healthy and not-healthy) was associated with small regions of the images, and therefore not all image regions were equally important for diagnostic purposes. In this line of thinking, attention mechanisms start being considered to highlight important regions and neglect unimportant ones, leading to more correct predictions. In this thesis, we aim to study the impact of such mechanisms in the extraction of features from histopathological images of the epithelium from the oral cavity. In order to access the quality of the generated features for diagnostic purposes, those features were used to distinguish healthy from cancerous histopathological images.
id RCAP_f377add86854682bcf367a886b44b1b8
oai_identifier_str oai:run.unl.pt:10362/148925
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Attention Mechanisms in the Classification of Histological ImagesMachine LearningAttention MechanismsDeep LearningHistopathological ImagesDiagnosisDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaRecently, there has been an increase in the number of medical exams prescribed by medical doctors, not only to diagnose but also to keep track of the evolution of pathologies. In this sense, one of the medical specialties where the mentioned increase in the prescription rate has been observed is oncology. In this regard, not only to efficiently diagnose but also to monitor the evolution of the mentioned diseases, CT (Computed Tomography) scans, MRIs (Magnetic Resonance Imaging), and Biopsies are imaging techniques commonly used. After the exams are performed and the results retrieved by the respective health professionals, their analysis and interpretation are mandatory. This process, carried out by medical experts, is usually a time-consuming and tiring task. In this sense and to reduce the workload of these experts and support decision making, the research community start proposing several computer-aided systems, whose primary goal is to efficiently distinguish between healthy images and tumoral ones. Despite the success achieved by these methodologies, it become evident that the distinction of the two mentioned image categories (healthy and not-healthy) was associated with small regions of the images, and therefore not all image regions were equally important for diagnostic purposes. In this line of thinking, attention mechanisms start being considered to highlight important regions and neglect unimportant ones, leading to more correct predictions. In this thesis, we aim to study the impact of such mechanisms in the extraction of features from histopathological images of the epithelium from the oral cavity. In order to access the quality of the generated features for diagnostic purposes, those features were used to distinguish healthy from cancerous histopathological images.Recentemente, tem-se observado uma tendência crescente no número de exames médicos prescritos por médicos, no sentido de diagnosticar e acompanhar a evolução de patologias. Deste modo, uma das especialidades médicas onde a referida taxa de prescrição se assinala bastante elevada é a oncologia. No sentido de não só diagnosticar com eficácia, mas também para que a evolução das patologias seja devidamente seguida, é comum recorrer-se a técnicas de imagiologia como TACs (Tomografia Axial Computorizadas), RMs (Ressonâncias Magnéticas) ou Biópsias. Após a recepção dos respectivos exames médicos é necessário a sua análise e interpretação pelos profissionais competentes. Este processo é frequentemente moroso e cansativo para estes profissionais. No sentido de reduzir o labor destes profissionais e apoiar a tomada de decisão, começaram a surgir na literatura diversos sistemas computacionais cujo objectivo é distinguir imagens saudáveis de imagens não-saudáveis. Apesar do sucesso alcançado por estes sistemas, rapidamente se verificou que a distinção das duas classes de imagens é dependente de pequenas regiões, neste sentido nem todas as regiões constituintes da imagem são igualmente importantes para a distinção acima indicada. Posto isto, foram considerados mecanismos de atenção no sentido de maior importância dar a porções relevantes da imagem e negligenciar menos importantes, conduzindo a previsões mais correctas. Nesta dissertação pretende-se fazer um estudo do impacto destes mecanismos na extracção de features de imagens histopatológicas da mucosa oral. No sentido de avaliar a qualidade das features extraídas para o diagnóstico, estas são usadas por classificadores para a distinção de imagens saudáveis e cancerígenas.Krippahl, LudwigRUNGomes, Mário Alexandre Neves2023-02-09T16:21:37Z2022-062022-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/148925enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:30:41Zoai:run.unl.pt:10362/148925Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:33.472867Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Attention Mechanisms in the Classification of Histological Images
title Attention Mechanisms in the Classification of Histological Images
spellingShingle Attention Mechanisms in the Classification of Histological Images
Gomes, Mário Alexandre Neves
Machine Learning
Attention Mechanisms
Deep Learning
Histopathological Images
Diagnosis
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Attention Mechanisms in the Classification of Histological Images
title_full Attention Mechanisms in the Classification of Histological Images
title_fullStr Attention Mechanisms in the Classification of Histological Images
title_full_unstemmed Attention Mechanisms in the Classification of Histological Images
title_sort Attention Mechanisms in the Classification of Histological Images
author Gomes, Mário Alexandre Neves
author_facet Gomes, Mário Alexandre Neves
author_role author
dc.contributor.none.fl_str_mv Krippahl, Ludwig
RUN
dc.contributor.author.fl_str_mv Gomes, Mário Alexandre Neves
dc.subject.por.fl_str_mv Machine Learning
Attention Mechanisms
Deep Learning
Histopathological Images
Diagnosis
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Machine Learning
Attention Mechanisms
Deep Learning
Histopathological Images
Diagnosis
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Recently, there has been an increase in the number of medical exams prescribed by medical doctors, not only to diagnose but also to keep track of the evolution of pathologies. In this sense, one of the medical specialties where the mentioned increase in the prescription rate has been observed is oncology. In this regard, not only to efficiently diagnose but also to monitor the evolution of the mentioned diseases, CT (Computed Tomography) scans, MRIs (Magnetic Resonance Imaging), and Biopsies are imaging techniques commonly used. After the exams are performed and the results retrieved by the respective health professionals, their analysis and interpretation are mandatory. This process, carried out by medical experts, is usually a time-consuming and tiring task. In this sense and to reduce the workload of these experts and support decision making, the research community start proposing several computer-aided systems, whose primary goal is to efficiently distinguish between healthy images and tumoral ones. Despite the success achieved by these methodologies, it become evident that the distinction of the two mentioned image categories (healthy and not-healthy) was associated with small regions of the images, and therefore not all image regions were equally important for diagnostic purposes. In this line of thinking, attention mechanisms start being considered to highlight important regions and neglect unimportant ones, leading to more correct predictions. In this thesis, we aim to study the impact of such mechanisms in the extraction of features from histopathological images of the epithelium from the oral cavity. In order to access the quality of the generated features for diagnostic purposes, those features were used to distinguish healthy from cancerous histopathological images.
publishDate 2022
dc.date.none.fl_str_mv 2022-06
2022-06-01T00:00:00Z
2023-02-09T16:21:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/148925
url http://hdl.handle.net/10362/148925
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138126001602560