Using clustering techniques to provide simulation scenarios for the smart grid
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/81025 https://doi.org/10.1016/j.scs.2016.04.012 |
Resumo: | The objective of this work is to obtain characteristic daily profiles of consumption, wind generation and electricity spot prices, needed to develop assessments of two different options commonly regarded under the smart grid paradigm: residential demand response, and small scale distributed electric energy storage. The approach consists of applying clustering algorithms to historical data, namely using a hierarchical method and a self-organizing neural network, in order to obtain clusters of diagrams representing characteristic daily diagrams of load, wind generation or electricity price. These diagrams are useful not only to analyze different scenarios of combined existence, but also to understand their individual relative importance. This study enabled also the identification of a probable range of variation around an average profile, by defining boundary profiles with the maximum and minimum values of any cluster prototypes. |
id |
RCAP_f40902c828a1a280e62ed5585f29e752 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/81025 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Using clustering techniques to provide simulation scenarios for the smart gridData clustering Demand response Energy box Energy storage Smart grid Distribution system operatorThe objective of this work is to obtain characteristic daily profiles of consumption, wind generation and electricity spot prices, needed to develop assessments of two different options commonly regarded under the smart grid paradigm: residential demand response, and small scale distributed electric energy storage. The approach consists of applying clustering algorithms to historical data, namely using a hierarchical method and a self-organizing neural network, in order to obtain clusters of diagrams representing characteristic daily diagrams of load, wind generation or electricity price. These diagrams are useful not only to analyze different scenarios of combined existence, but also to understand their individual relative importance. This study enabled also the identification of a probable range of variation around an average profile, by defining boundary profiles with the maximum and minimum values of any cluster prototypes.Elsevier2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/81025http://hdl.handle.net/10316/81025https://doi.org/10.1016/j.scs.2016.04.012eng2210-6707Miguel, PedroGonçalves, JoséNeves, LuísMartins, A. Gomesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-09-25T16:17:20Zoai:estudogeral.uc.pt:10316/81025Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:03:13.631604Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Using clustering techniques to provide simulation scenarios for the smart grid |
title |
Using clustering techniques to provide simulation scenarios for the smart grid |
spellingShingle |
Using clustering techniques to provide simulation scenarios for the smart grid Miguel, Pedro Data clustering Demand response Energy box Energy storage Smart grid Distribution system operator |
title_short |
Using clustering techniques to provide simulation scenarios for the smart grid |
title_full |
Using clustering techniques to provide simulation scenarios for the smart grid |
title_fullStr |
Using clustering techniques to provide simulation scenarios for the smart grid |
title_full_unstemmed |
Using clustering techniques to provide simulation scenarios for the smart grid |
title_sort |
Using clustering techniques to provide simulation scenarios for the smart grid |
author |
Miguel, Pedro |
author_facet |
Miguel, Pedro Gonçalves, José Neves, Luís Martins, A. Gomes |
author_role |
author |
author2 |
Gonçalves, José Neves, Luís Martins, A. Gomes |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Miguel, Pedro Gonçalves, José Neves, Luís Martins, A. Gomes |
dc.subject.por.fl_str_mv |
Data clustering Demand response Energy box Energy storage Smart grid Distribution system operator |
topic |
Data clustering Demand response Energy box Energy storage Smart grid Distribution system operator |
description |
The objective of this work is to obtain characteristic daily profiles of consumption, wind generation and electricity spot prices, needed to develop assessments of two different options commonly regarded under the smart grid paradigm: residential demand response, and small scale distributed electric energy storage. The approach consists of applying clustering algorithms to historical data, namely using a hierarchical method and a self-organizing neural network, in order to obtain clusters of diagrams representing characteristic daily diagrams of load, wind generation or electricity price. These diagrams are useful not only to analyze different scenarios of combined existence, but also to understand their individual relative importance. This study enabled also the identification of a probable range of variation around an average profile, by defining boundary profiles with the maximum and minimum values of any cluster prototypes. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/81025 http://hdl.handle.net/10316/81025 https://doi.org/10.1016/j.scs.2016.04.012 |
url |
http://hdl.handle.net/10316/81025 https://doi.org/10.1016/j.scs.2016.04.012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2210-6707 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133925676679168 |