A Trading Agent Framework Using Plain Strategies & Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://repositorio-aberto.up.pt/handle/10216/76151 |
Resumo: | The world of online sports betting exchange (trading) is growing every day and with that people are trying to improve their trading by using automated trading. In analogy to the financial markets the buy and sell operations are replaced by betting for and against (Back and Lay).This thesis describes a framework to be used to develop automated trading agents at Betfair sports markets using a Java programming interface. Betfair processes more than five million transactions (such as placing a bet) every day which is more than all European stock exchanges combined. Betfair is available 24 hours a day 7 days a week. For this thesis were developed two trading agents, DealerAgent and HorseLayAgent, accordingly with the presented framework. The agents mentioned above act on To Win horse racing markets in United Kingdom. They use plain strategies together with machine learning methods to improve the profit/loss results. The developed agents were submitted to viability tests using data from Betfair To Win horse racing markets from January, February and March of 2014. |
id |
RCAP_f538193f758e43eaa650c6c2f2b1f5d3 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/76151 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Trading Agent Framework Using Plain Strategies & Machine LearningEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringThe world of online sports betting exchange (trading) is growing every day and with that people are trying to improve their trading by using automated trading. In analogy to the financial markets the buy and sell operations are replaced by betting for and against (Back and Lay).This thesis describes a framework to be used to develop automated trading agents at Betfair sports markets using a Java programming interface. Betfair processes more than five million transactions (such as placing a bet) every day which is more than all European stock exchanges combined. Betfair is available 24 hours a day 7 days a week. For this thesis were developed two trading agents, DealerAgent and HorseLayAgent, accordingly with the presented framework. The agents mentioned above act on To Win horse racing markets in United Kingdom. They use plain strategies together with machine learning methods to improve the profit/loss results. The developed agents were submitted to viability tests using data from Betfair To Win horse racing markets from January, February and March of 2014.2014-07-082014-07-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/76151TID:201308088engJoão Pedro Araújo Santosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:08:22Zoai:repositorio-aberto.up.pt:10216/76151Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:34:20.941443Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
title |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
spellingShingle |
A Trading Agent Framework Using Plain Strategies & Machine Learning João Pedro Araújo Santos Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
title_short |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
title_full |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
title_fullStr |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
title_full_unstemmed |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
title_sort |
A Trading Agent Framework Using Plain Strategies & Machine Learning |
author |
João Pedro Araújo Santos |
author_facet |
João Pedro Araújo Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
João Pedro Araújo Santos |
dc.subject.por.fl_str_mv |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
topic |
Engenharia electrotécnica, electrónica e informática Electrical engineering, Electronic engineering, Information engineering |
description |
The world of online sports betting exchange (trading) is growing every day and with that people are trying to improve their trading by using automated trading. In analogy to the financial markets the buy and sell operations are replaced by betting for and against (Back and Lay).This thesis describes a framework to be used to develop automated trading agents at Betfair sports markets using a Java programming interface. Betfair processes more than five million transactions (such as placing a bet) every day which is more than all European stock exchanges combined. Betfair is available 24 hours a day 7 days a week. For this thesis were developed two trading agents, DealerAgent and HorseLayAgent, accordingly with the presented framework. The agents mentioned above act on To Win horse racing markets in United Kingdom. They use plain strategies together with machine learning methods to improve the profit/loss results. The developed agents were submitted to viability tests using data from Betfair To Win horse racing markets from January, February and March of 2014. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07-08 2014-07-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio-aberto.up.pt/handle/10216/76151 TID:201308088 |
url |
https://repositorio-aberto.up.pt/handle/10216/76151 |
identifier_str_mv |
TID:201308088 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135655045890048 |