Otimização de Portfólio de Participação em Mercados de Energia Elétrica

Detalhes bibliográficos
Autor(a) principal: Faia, Ricardo Francisco Marcos
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/9935
Resumo: Na atualidade são visíveis as mudanças ocorridas nos mercados de energia elétrica, em consequência da introdução maciça de energia proveniente de fontes renováveis. Pelo facto de serem renováveis são de grande interesse para a população, pois o custo de produção e as emissões de gases, que contribuem para o efeito de estufa durante o seu funcionamento, são nulas. Estas características são essenciais para as mais altas chefias das instituições europeias, que impuseram políticas para promover a utilização e instalação de tecnologia para o aproveitamento das fontes que facultam as energias renováveis. Os estados membros europeus mostraram-se recetíveis a estas políticas e incentivaram o investimento nestas tecnologias. Deste modo, houve uma enorme introdução de energias de arater intermitente e instável que condicionaram o normal funcionamento dos sistemas de energia elétrica, o que, por sua vez, conduziu a inúmeras mudanças no setor. Esta reestruturação teve impacto em todo o setor, como é o caso dos mercados de energia elétrica, onde surgiram novas formas de negociação e foram criadas novas entidades de mercado. Com estas alterações, a complexidade dos mercados de energia elétrica aumentou, assim como a imprevisibilidade dos mesmos. Por isso, tornou-se essencial a existência de formas de apoio que auxilie a tomada de decisão por parte das entidades de mercado. Com a emergência de todas estas exigências, tornou-se fundamental o desenvolvimento de ferramentas para auxílio na tomada de decisão. Estas ferramentas ajudam as diversas entidades a perceber o funcionamento dos mercados e prever as interações que ocorrerão entre as diferentes entidades existentes no mercado. A inteligência artificial teve um papel crucial no desenvolvimento destas ferramentas, nomeadamente os sistemas multiagente, que têm sido uma solução muito explorada pelos interessados no setor. Estes, utilizam várias técnicas da inteligência artificial, o que lhes permite serem adaptativos a diferentes situações, simular os diferentes agentes existentes no mercado, permitir diversos tipos de negociação, e ainda aprender ao longo da sua utilização. No entanto, apesar de estas ferramentas atualmente estarem voltadas para o estudo do funcionamento do sistema elétrico, deixam de lado o contexto de negociação e descartam o apoio às decisões do vendedor/comprador de eletricidade. O largo âmbito de aplicação da inteligência artificial fornece diversas experiências, nomeadamente ferramentas de otimização meta-heurísticas, que permitem a resolução de problemas num curto espaço de tempo, e com uma qualidade de resultados muito próxima daquela alcançada por técnicas determinísticas à custa de um elevado tempo de execução. O trabalho desenvolvido nesta dissertação tem como objeto de estudo a falha supra referenciada. Sugere uma metodologia de negociação da energia elétrica que permite vender e comprar a mesma em diferentes mercados com regras específicas, e indica um portfólio de participação nos vários mercados em que cada interveniente pode negociar. A metodologia apresentada permite gerar cenários realistas a partir do resultado da otimização do portfólio, que podem ser tomados em consideração na decisão dos intervenientes de mercado, e assim conseguirem retirar o máximo proveito das suas negociações. Os resultados apresentados foram obtidos através da utilização de dados reais provenientes dos diferentes operadores de mercados. Estes dados são válidos para a formulação de diferentes cenários que possam ser considerados no ato da negociação.
id RCAP_f5457c781f88dae93468da287fd3fa71
oai_identifier_str oai:recipp.ipp.pt:10400.22/9935
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Otimização de Portfólio de Participação em Mercados de Energia ElétricaFerramentas de OtimizaçãoInteligência ArtificialMercados de Energia ElétricaOtimização de PortfólioArtificial IntelligenceEnergy MarketsOptimization ToolsPortfolio OptimizationNa atualidade são visíveis as mudanças ocorridas nos mercados de energia elétrica, em consequência da introdução maciça de energia proveniente de fontes renováveis. Pelo facto de serem renováveis são de grande interesse para a população, pois o custo de produção e as emissões de gases, que contribuem para o efeito de estufa durante o seu funcionamento, são nulas. Estas características são essenciais para as mais altas chefias das instituições europeias, que impuseram políticas para promover a utilização e instalação de tecnologia para o aproveitamento das fontes que facultam as energias renováveis. Os estados membros europeus mostraram-se recetíveis a estas políticas e incentivaram o investimento nestas tecnologias. Deste modo, houve uma enorme introdução de energias de arater intermitente e instável que condicionaram o normal funcionamento dos sistemas de energia elétrica, o que, por sua vez, conduziu a inúmeras mudanças no setor. Esta reestruturação teve impacto em todo o setor, como é o caso dos mercados de energia elétrica, onde surgiram novas formas de negociação e foram criadas novas entidades de mercado. Com estas alterações, a complexidade dos mercados de energia elétrica aumentou, assim como a imprevisibilidade dos mesmos. Por isso, tornou-se essencial a existência de formas de apoio que auxilie a tomada de decisão por parte das entidades de mercado. Com a emergência de todas estas exigências, tornou-se fundamental o desenvolvimento de ferramentas para auxílio na tomada de decisão. Estas ferramentas ajudam as diversas entidades a perceber o funcionamento dos mercados e prever as interações que ocorrerão entre as diferentes entidades existentes no mercado. A inteligência artificial teve um papel crucial no desenvolvimento destas ferramentas, nomeadamente os sistemas multiagente, que têm sido uma solução muito explorada pelos interessados no setor. Estes, utilizam várias técnicas da inteligência artificial, o que lhes permite serem adaptativos a diferentes situações, simular os diferentes agentes existentes no mercado, permitir diversos tipos de negociação, e ainda aprender ao longo da sua utilização. No entanto, apesar de estas ferramentas atualmente estarem voltadas para o estudo do funcionamento do sistema elétrico, deixam de lado o contexto de negociação e descartam o apoio às decisões do vendedor/comprador de eletricidade. O largo âmbito de aplicação da inteligência artificial fornece diversas experiências, nomeadamente ferramentas de otimização meta-heurísticas, que permitem a resolução de problemas num curto espaço de tempo, e com uma qualidade de resultados muito próxima daquela alcançada por técnicas determinísticas à custa de um elevado tempo de execução. O trabalho desenvolvido nesta dissertação tem como objeto de estudo a falha supra referenciada. Sugere uma metodologia de negociação da energia elétrica que permite vender e comprar a mesma em diferentes mercados com regras específicas, e indica um portfólio de participação nos vários mercados em que cada interveniente pode negociar. A metodologia apresentada permite gerar cenários realistas a partir do resultado da otimização do portfólio, que podem ser tomados em consideração na decisão dos intervenientes de mercado, e assim conseguirem retirar o máximo proveito das suas negociações. Os resultados apresentados foram obtidos através da utilização de dados reais provenientes dos diferentes operadores de mercados. Estes dados são válidos para a formulação de diferentes cenários que possam ser considerados no ato da negociação.Nowadays, there are several relevant changes in electricity markets, which are a consequence of the massive introduction of renewable energies. The fact that they are renewable is of great interest for all of us, because the cost of production of this energy is null and emissions of greenhouse gases are also zero during operation. This feature aroused great interest in the high European institutions that have imposed policies to promote the use and installation of technology for the use of sources that provide renewable energy. European member states have shown receptiveness to these policies, potentiating the investment in these technologies and thus hearing a great introduction of intermittent and unstable energy that conditioned the normal operation of power systems and led to further inevitable changes in an already under-restructuring power and energy sector. This restructuring had an impact throughout the industry, as is the case of the electricity markets, where new forms of trading emerged and new market entities were created. With these changes the complexity of electricity markets increased as well as the associated unpredictability. This made is essential to have support tools to aid decision making by the arket entities. With the emergence of all these requirements it is fundamental to develop tools in order to assist the decision-making process, and to help understanding the functioning of markets and predict the interactions that occur between the existing market entities. Artificial intelligence has an important role in the development of these tools. Multi-agent systems, in particular, have been much explored by stakeholders in the sector as a valid solution. They use various techniques of artificial intelligence that allows them to be adaptive to any situation, to simulate the different existing players in the market, allowing any type of trading and enabling them to learn the logo of its use. However, these tools are directed to study of the proper functioning of the electrical system, leaving aside the negotiation context and the decision support for the seller / buyer of electricity. The applicability of artificial intelligence is not limited to electricity markets. It is also applied in many other areas due to its optimization tools that enable solving problems in a short time and with very similar results to those achieved by deterministic techniques, at the cost of a high execution time. The work in this dissertation addresses the above-mentioned gaps, and suggests an electricity trading decision support methodology to buy and sell electricity in different markets with specific rules. This is done by suggesting a portfolio of market participation that each party can perform. The presented methodology generates realistic scenarios from the portfolio optimization of the results that may be taken into account in the decision of market participants; and allow these players to take full advantage of it. The results were obtained through the use of real data stemmed from different market operators, which are valid for the generation of different scenarios that can be taken into account in the negotiation act.Vale, Zita Maria Almeida doRepositório Científico do Instituto Politécnico do PortoFaia, Ricardo Francisco Marcos2017-06-23T11:04:02Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/9935TID:201708221porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:51:27Zoai:recipp.ipp.pt:10400.22/9935Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:30:24.646828Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Otimização de Portfólio de Participação em Mercados de Energia Elétrica
title Otimização de Portfólio de Participação em Mercados de Energia Elétrica
spellingShingle Otimização de Portfólio de Participação em Mercados de Energia Elétrica
Faia, Ricardo Francisco Marcos
Ferramentas de Otimização
Inteligência Artificial
Mercados de Energia Elétrica
Otimização de Portfólio
Artificial Intelligence
Energy Markets
Optimization Tools
Portfolio Optimization
title_short Otimização de Portfólio de Participação em Mercados de Energia Elétrica
title_full Otimização de Portfólio de Participação em Mercados de Energia Elétrica
title_fullStr Otimização de Portfólio de Participação em Mercados de Energia Elétrica
title_full_unstemmed Otimização de Portfólio de Participação em Mercados de Energia Elétrica
title_sort Otimização de Portfólio de Participação em Mercados de Energia Elétrica
author Faia, Ricardo Francisco Marcos
author_facet Faia, Ricardo Francisco Marcos
author_role author
dc.contributor.none.fl_str_mv Vale, Zita Maria Almeida do
Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Faia, Ricardo Francisco Marcos
dc.subject.por.fl_str_mv Ferramentas de Otimização
Inteligência Artificial
Mercados de Energia Elétrica
Otimização de Portfólio
Artificial Intelligence
Energy Markets
Optimization Tools
Portfolio Optimization
topic Ferramentas de Otimização
Inteligência Artificial
Mercados de Energia Elétrica
Otimização de Portfólio
Artificial Intelligence
Energy Markets
Optimization Tools
Portfolio Optimization
description Na atualidade são visíveis as mudanças ocorridas nos mercados de energia elétrica, em consequência da introdução maciça de energia proveniente de fontes renováveis. Pelo facto de serem renováveis são de grande interesse para a população, pois o custo de produção e as emissões de gases, que contribuem para o efeito de estufa durante o seu funcionamento, são nulas. Estas características são essenciais para as mais altas chefias das instituições europeias, que impuseram políticas para promover a utilização e instalação de tecnologia para o aproveitamento das fontes que facultam as energias renováveis. Os estados membros europeus mostraram-se recetíveis a estas políticas e incentivaram o investimento nestas tecnologias. Deste modo, houve uma enorme introdução de energias de arater intermitente e instável que condicionaram o normal funcionamento dos sistemas de energia elétrica, o que, por sua vez, conduziu a inúmeras mudanças no setor. Esta reestruturação teve impacto em todo o setor, como é o caso dos mercados de energia elétrica, onde surgiram novas formas de negociação e foram criadas novas entidades de mercado. Com estas alterações, a complexidade dos mercados de energia elétrica aumentou, assim como a imprevisibilidade dos mesmos. Por isso, tornou-se essencial a existência de formas de apoio que auxilie a tomada de decisão por parte das entidades de mercado. Com a emergência de todas estas exigências, tornou-se fundamental o desenvolvimento de ferramentas para auxílio na tomada de decisão. Estas ferramentas ajudam as diversas entidades a perceber o funcionamento dos mercados e prever as interações que ocorrerão entre as diferentes entidades existentes no mercado. A inteligência artificial teve um papel crucial no desenvolvimento destas ferramentas, nomeadamente os sistemas multiagente, que têm sido uma solução muito explorada pelos interessados no setor. Estes, utilizam várias técnicas da inteligência artificial, o que lhes permite serem adaptativos a diferentes situações, simular os diferentes agentes existentes no mercado, permitir diversos tipos de negociação, e ainda aprender ao longo da sua utilização. No entanto, apesar de estas ferramentas atualmente estarem voltadas para o estudo do funcionamento do sistema elétrico, deixam de lado o contexto de negociação e descartam o apoio às decisões do vendedor/comprador de eletricidade. O largo âmbito de aplicação da inteligência artificial fornece diversas experiências, nomeadamente ferramentas de otimização meta-heurísticas, que permitem a resolução de problemas num curto espaço de tempo, e com uma qualidade de resultados muito próxima daquela alcançada por técnicas determinísticas à custa de um elevado tempo de execução. O trabalho desenvolvido nesta dissertação tem como objeto de estudo a falha supra referenciada. Sugere uma metodologia de negociação da energia elétrica que permite vender e comprar a mesma em diferentes mercados com regras específicas, e indica um portfólio de participação nos vários mercados em que cada interveniente pode negociar. A metodologia apresentada permite gerar cenários realistas a partir do resultado da otimização do portfólio, que podem ser tomados em consideração na decisão dos intervenientes de mercado, e assim conseguirem retirar o máximo proveito das suas negociações. Os resultados apresentados foram obtidos através da utilização de dados reais provenientes dos diferentes operadores de mercados. Estes dados são válidos para a formulação de diferentes cenários que possam ser considerados no ato da negociação.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2017-06-23T11:04:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/9935
TID:201708221
url http://hdl.handle.net/10400.22/9935
identifier_str_mv TID:201708221
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131399952793600