Model-based design and optimization of GSSR chromatography for peptide purification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/154555 |
Resumo: | PhD grant BD/06003/2020 (R.P. Fernandes). Publisher Copyright: © 2022 The Authors |
id |
RCAP_f58869576b2a4cb8e0c93fb32d9c1bd2 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/154555 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Model-based design and optimization of GSSR chromatography for peptide purificationGSSR processInterior point methodMulticolumn chromatographyOptimization under uncertaintyProcess optimizationSolvent gradientEngineering (miscellaneous)Chemical Engineering (miscellaneous)PhD grant BD/06003/2020 (R.P. Fernandes). Publisher Copyright: © 2022 The AuthorsGradient with Steady State Recycle (GSSR) is a recently developed process for center-cut separation by solvent-gradient chromatography. The process comprises a multicolumn, open-loop system with cyclic steady-state operation that simulates a solvent gradient moving countercurrently with respect to the solid phase. However, the feed is always injected into the same column and the product always collected from the same column as in single-column batch chromatography. Here, three-column GSSR chromatography for peptide purification is optimized using state-of-the-art mathematical programming tools. The optimization problem is formulated using a full-discretization approach for steady periodic dynamics. The resulting nonlinear programming problem is solved by an efficient open-source interior-point solver coupled to a high-performance parallel linear solver for sparse symmetric indefinite matrices. The procedure is successfully employed to find optimal solutions for a series of process design problems with increasing number of decision variables. In addition to productivity and recovery, process performance is analyzed in terms of two key performance indicators: dilution ratio and solvent consumption ratio. Finally, the problem of robust process design under uncertainty in the solvent gradient manipulation is examined. The best solution is chosen only among candidate solutions that are robust feasible, i.e., remain feasible for all modifier gradient perturbations within the accuracy range of the gradient pump. This gives rise to a robust approach to optimal design in which the nominal problem is replaced by a worst case problem. Overall, our work illustrates the advantages of using advanced mathematical programming tools in designing and optimizing a GSSR process for which it is difficult to deduce sufficiently general heuristic design rules.DQ - Departamento de QuímicaLAQV@REQUIMTERUNSantos, Tiago P. D.Fernandes, Rita P.Ribeiro, Rui P. P. L.Peixoto, CristinaMota, José P. B.2023-06-28T22:17:53Z2023-032023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfhttp://hdl.handle.net/10362/154555eng2772-5081PURE: 64723144https://doi.org/10.1016/j.dche.2022.100081info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:12:26Zoai:run.unl.pt:10362/154555Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:12:26Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Model-based design and optimization of GSSR chromatography for peptide purification |
title |
Model-based design and optimization of GSSR chromatography for peptide purification |
spellingShingle |
Model-based design and optimization of GSSR chromatography for peptide purification Santos, Tiago P. D. GSSR process Interior point method Multicolumn chromatography Optimization under uncertainty Process optimization Solvent gradient Engineering (miscellaneous) Chemical Engineering (miscellaneous) |
title_short |
Model-based design and optimization of GSSR chromatography for peptide purification |
title_full |
Model-based design and optimization of GSSR chromatography for peptide purification |
title_fullStr |
Model-based design and optimization of GSSR chromatography for peptide purification |
title_full_unstemmed |
Model-based design and optimization of GSSR chromatography for peptide purification |
title_sort |
Model-based design and optimization of GSSR chromatography for peptide purification |
author |
Santos, Tiago P. D. |
author_facet |
Santos, Tiago P. D. Fernandes, Rita P. Ribeiro, Rui P. P. L. Peixoto, Cristina Mota, José P. B. |
author_role |
author |
author2 |
Fernandes, Rita P. Ribeiro, Rui P. P. L. Peixoto, Cristina Mota, José P. B. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
DQ - Departamento de Química LAQV@REQUIMTE RUN |
dc.contributor.author.fl_str_mv |
Santos, Tiago P. D. Fernandes, Rita P. Ribeiro, Rui P. P. L. Peixoto, Cristina Mota, José P. B. |
dc.subject.por.fl_str_mv |
GSSR process Interior point method Multicolumn chromatography Optimization under uncertainty Process optimization Solvent gradient Engineering (miscellaneous) Chemical Engineering (miscellaneous) |
topic |
GSSR process Interior point method Multicolumn chromatography Optimization under uncertainty Process optimization Solvent gradient Engineering (miscellaneous) Chemical Engineering (miscellaneous) |
description |
PhD grant BD/06003/2020 (R.P. Fernandes). Publisher Copyright: © 2022 The Authors |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-28T22:17:53Z 2023-03 2023-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/154555 |
url |
http://hdl.handle.net/10362/154555 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2772-5081 PURE: 64723144 https://doi.org/10.1016/j.dche.2022.100081 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545940668514304 |