Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/86222 |
Resumo: | Dissertação de mestrado em Informatics Engineering |
id |
RCAP_f5a098a72480cdcbcd315f2c43806215 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/86222 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGALiDARDeep learningFPGAEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaDissertação de mestrado em Informatics EngineeringIn the last few years, the automotive industry has relied heavily on deep learning applications for perception solutions. With data-heavy sensors, such as LiDAR, becoming a standard, the task of developing low-power and real-time applications has become increasingly more challenging. To obtain the maximum computational efficiency, no longer can one focus solely on the software aspect of such applications, while disregarding the underlying hardware. In this thesis, a hardware-software co-design approach is used to implement an inference application leveraging the SqueezeSegV3, a LiDAR-based convolutional neural network, on the Versal ACAP VCK190 FPGA. Automotive requirements carefully drive the development of the proposed solution, with real-time performance and low power consumption being the target metrics. A first experiment validates the suitability of Xilinx’s Vitis-AI tool for the deployment of deep convolutional neural networks on FPGAs. Both the ResNet-18 and SqueezeNet neural networks are deployed to the Zynq UltraScale+ MPSoC ZCU104 and Versal ACAP VCK190 FPGAs. The results show that both networks achieve far more than the real-time requirements while consuming low power. Compared to an NVIDIA RTX 3090 GPU, the performance per watt during both network’s inference is 12x and 47.8x higher and 15.1x and 26.6x higher respectively for the Zynq UltraScale+ MPSoC ZCU104 and the Versal ACAP VCK190 FPGA. These results are obtained with no drop in accuracy in the quantization step. A second experiment builds upon the results of the first by deploying a real-time application containing the SqueezeSegV3 model using the Semantic-KITTI dataset. A framerate of 11 Hz is achieved with a peak power consumption of 78 Watts. The quantization step results in a minimal accuracy and IoU degradation of 0.7 and 1.5 points respectively. A smaller version of the same model is also deployed achieving a framerate of 19 Hz and a peak power consumption of 76 Watts. The application performs semantic segmentation over all the point cloud with a field of view of 360°.Nos últimos anos a indústria automóvel tem cada vez mais aplicado deep learning para solucionar problemas de perceção. Dado que os sensores que produzem grandes quantidades de dados, como o LiDAR, se têm tornado standard, a tarefa de desenvolver aplicações de baixo consumo energético e com capacidades de reagir em tempo real tem-se tornado cada vez mais desafiante. Para obter a máxima eficiência computacional, deixou de ser possível focar-se apenas no software aquando do desenvolvimento de uma aplicação deixando de lado o hardware subjacente. Nesta tese, uma abordagem de desenvolvimento simultâneo de hardware e software é usada para implementar uma aplicação de inferência usando o SqueezeSegV3, uma rede neuronal convolucional profunda, na FPGA Versal ACAP VCK190. São os requisitos automotive que guiam o desenvolvimento da solução proposta, sendo a performance em tempo real e o baixo consumo energético, as métricas alvo principais. Uma primeira experiência valida a aptidão da ferramenta Vitis-AI para a implantação de redes neuronais convolucionais profundas em FPGAs. As redes ResNet-18 e SqueezeNet são ambas implantadas nas FPGAs Zynq UltraScale+ MPSoC ZCU104 e Versal ACAP VCK190. Os resultados mostram que ambas as redes ultrapassam os requisitos de tempo real consumindo pouca energia. Comparado com a GPU NVIDIA RTX 3090, a performance por Watt durante a inferência de ambas as redes é superior em 12x e 47.8x e 15.1x e 26.6x respetivamente na Zynq UltraScale+ MPSoC ZCU104 e na Versal ACAP VCK190. Estes resultados foram obtidos sem qualquer perda de accuracy na etapa de quantização. Uma segunda experiência é feita no seguimento dos resultados da primeira, implantando uma aplicação de inferência em tempo real contendo o modelo SqueezeSegV3 e usando o conjunto de dados Semantic-KITTI. Um framerate de 11 Hz é atingido com um pico de consumo energético de 78 Watts. O processo de quantização resulta numa perda mínima de accuracy e IoU com valores de 0.7 e 1.5 pontos respetivamente. Uma versão mais pequena do mesmo modelo é também implantada, atingindo uma framerate de 19 Hz e um pico de consumo energético de 76 Watts. A aplicação desenvolvida executa segmentação semântica sobre a totalidade das nuvens de pontos LiDAR, com um campo de visão de 360°.Asgarifar, SanazAlves, VictorUniversidade do MinhoDelgado, Pedro Paulo Fontes2023-01-052023-01-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1822/86222eng203345681info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-09-02T01:20:42Zoai:repositorium.sdum.uminho.pt:1822/86222Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:28:01.909041Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
title |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
spellingShingle |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA Delgado, Pedro Paulo Fontes LiDAR Deep learning FPGA Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
title_full |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
title_fullStr |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
title_full_unstemmed |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
title_sort |
Real-time implementation of 3D LiDAR point cloud semantic segmentation in an FPGA |
author |
Delgado, Pedro Paulo Fontes |
author_facet |
Delgado, Pedro Paulo Fontes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Asgarifar, Sanaz Alves, Victor Universidade do Minho |
dc.contributor.author.fl_str_mv |
Delgado, Pedro Paulo Fontes |
dc.subject.por.fl_str_mv |
LiDAR Deep learning FPGA Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
LiDAR Deep learning FPGA Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
Dissertação de mestrado em Informatics Engineering |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-05 2023-01-05T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/86222 |
url |
https://hdl.handle.net/1822/86222 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
203345681 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133548281593856 |