Partial orders on transformation semigroups
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/7451 |
Resumo: | In 1986, Kowol and Mitsch studied properties of the so-called 'natural partial order' less than or equal to on T(X), the total transformation semigroup defined on a set X. In particular, they determined when two total transformations are related under this order, and they described the minimal and maximal elements of (T(X), less than or equal to). In this paper, we extend that work to the semigroup P(X) of all partial transformations of X, compare less than or equal to with another 'natural' partial order on P(X), characterise the meet and join of these two orders, and determine the minimal and maximal elements of P(X) with respect to each order. |
id |
RCAP_f65a570e0bdcb603956e207b3bea51f2 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/7451 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Partial orders on transformation semigroupsNatural partial orderTransformation semigroupScience & TechnologyIn 1986, Kowol and Mitsch studied properties of the so-called 'natural partial order' less than or equal to on T(X), the total transformation semigroup defined on a set X. In particular, they determined when two total transformations are related under this order, and they described the minimal and maximal elements of (T(X), less than or equal to). In this paper, we extend that work to the semigroup P(X) of all partial transformations of X, compare less than or equal to with another 'natural' partial order on P(X), characterise the meet and join of these two orders, and determine the minimal and maximal elements of P(X) with respect to each order.Centro de Matemática da Universidade do Minho.Fundação para a Ciência e a Tecnologia (FCT).SpringerUniversidade do MinhoSmith, M. Paula MarquesSullivan, R. P.20032003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/7451eng"Monatshefte für Mathematik". ISSN 0026-9255. 140:2 (2003) 103-118.0026-925510.1007/s00605-002-0546-4www.springerlink.comhttp://springerlink.com/content/k2f56v7nu7d5ga2l/info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:37:51Zoai:repositorium.sdum.uminho.pt:1822/7451Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:34:11.732486Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Partial orders on transformation semigroups |
title |
Partial orders on transformation semigroups |
spellingShingle |
Partial orders on transformation semigroups Smith, M. Paula Marques Natural partial order Transformation semigroup Science & Technology |
title_short |
Partial orders on transformation semigroups |
title_full |
Partial orders on transformation semigroups |
title_fullStr |
Partial orders on transformation semigroups |
title_full_unstemmed |
Partial orders on transformation semigroups |
title_sort |
Partial orders on transformation semigroups |
author |
Smith, M. Paula Marques |
author_facet |
Smith, M. Paula Marques Sullivan, R. P. |
author_role |
author |
author2 |
Sullivan, R. P. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Smith, M. Paula Marques Sullivan, R. P. |
dc.subject.por.fl_str_mv |
Natural partial order Transformation semigroup Science & Technology |
topic |
Natural partial order Transformation semigroup Science & Technology |
description |
In 1986, Kowol and Mitsch studied properties of the so-called 'natural partial order' less than or equal to on T(X), the total transformation semigroup defined on a set X. In particular, they determined when two total transformations are related under this order, and they described the minimal and maximal elements of (T(X), less than or equal to). In this paper, we extend that work to the semigroup P(X) of all partial transformations of X, compare less than or equal to with another 'natural' partial order on P(X), characterise the meet and join of these two orders, and determine the minimal and maximal elements of P(X) with respect to each order. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 2003-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/7451 |
url |
http://hdl.handle.net/1822/7451 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Monatshefte für Mathematik". ISSN 0026-9255. 140:2 (2003) 103-118. 0026-9255 10.1007/s00605-002-0546-4 www.springerlink.com http://springerlink.com/content/k2f56v7nu7d5ga2l/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132861836558336 |