Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin

Detalhes bibliográficos
Autor(a) principal: López Pérez, A.E.
Data de Publicação: 2019
Outros Autores: Rey, D., Martins, Virgínia, Plaza-Morlote, M., Rubio, B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/36778
Resumo: The validity and usefulness of multivariate statistical tools for the facies characterization in deep-marine environments have been applied on the geochemical, sedimentological and magnetic data from a piston core extracted from the Transitional Zone in the Galician Continental Margin. The combination of geochemical profiles of Fe, Mn, Ti, Ba and Ca and magnetic susceptibility (MS) obtained using the ItraxTM Core Scanner at the University of Vigo, together with the grain-size, grey level and R (red) G (green) B (blue) colour analyses have allowed characterizing and classifying the sediments of the core PC13-3 using SPSS package v. 23. Cluster Analysis (CA) displays, in the first level of the hierarchy, two major groups that correspond with clay-silt and sand facies. In a second level, it is possible to observe six subfacies that match de visu preliminary classification and allowed us to complete and improve the characterization and the facies limits in the whole core. Discriminant Analysis (DA) confirmed the validity of the cluster analyses and enhanced the results of the classification. The Principal Component Analysis (PCA) shows four principal components: coarse lithogenic fraction (PC1), fine lithogenic fraction (PC2), high density fraction (PC3) and biogenic fraction (PC4). These results are in concordance with the Pearson correlation coefficient and the SEM observations. In general terms, the results confirm the utility of the multivariate statistical methods applied on high resolution geochemical and magnetic data acquired with ItraxTM corer scanner, as a quick and complementary tool in sedimentary facies analysis and description in deep marine environments.
id RCAP_f6705e6c4776afbcd29817b700e94040
oai_identifier_str oai:ria.ua.pt:10773/36778
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental MarginGalicia continental marginSedimentologyFacies analysisMultivariate statistical analysisItraxTM core scannerThe validity and usefulness of multivariate statistical tools for the facies characterization in deep-marine environments have been applied on the geochemical, sedimentological and magnetic data from a piston core extracted from the Transitional Zone in the Galician Continental Margin. The combination of geochemical profiles of Fe, Mn, Ti, Ba and Ca and magnetic susceptibility (MS) obtained using the ItraxTM Core Scanner at the University of Vigo, together with the grain-size, grey level and R (red) G (green) B (blue) colour analyses have allowed characterizing and classifying the sediments of the core PC13-3 using SPSS package v. 23. Cluster Analysis (CA) displays, in the first level of the hierarchy, two major groups that correspond with clay-silt and sand facies. In a second level, it is possible to observe six subfacies that match de visu preliminary classification and allowed us to complete and improve the characterization and the facies limits in the whole core. Discriminant Analysis (DA) confirmed the validity of the cluster analyses and enhanced the results of the classification. The Principal Component Analysis (PCA) shows four principal components: coarse lithogenic fraction (PC1), fine lithogenic fraction (PC2), high density fraction (PC3) and biogenic fraction (PC4). These results are in concordance with the Pearson correlation coefficient and the SEM observations. In general terms, the results confirm the utility of the multivariate statistical methods applied on high resolution geochemical and magnetic data acquired with ItraxTM corer scanner, as a quick and complementary tool in sedimentary facies analysis and description in deep marine environments.Elsevier2023-03-31T14:31:18Z2019-04-30T00:00:00Z2019-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36778eng1040-618210.1016/j.quaint.2018.06.035López Pérez, A.E.Rey, D.Martins, VirgíniaPlaza-Morlote, M.Rubio, B.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:10:53Zoai:ria.ua.pt:10773/36778Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:07:28.815560Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
title Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
spellingShingle Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
López Pérez, A.E.
Galicia continental margin
Sedimentology
Facies analysis
Multivariate statistical analysis
ItraxTM core scanner
title_short Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
title_full Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
title_fullStr Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
title_full_unstemmed Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
title_sort Application of multivariate statistical analyses to Itrax core scanner data for the identification of deep-marine sedimentary facies: a case study in the Galician Continental Margin
author López Pérez, A.E.
author_facet López Pérez, A.E.
Rey, D.
Martins, Virgínia
Plaza-Morlote, M.
Rubio, B.
author_role author
author2 Rey, D.
Martins, Virgínia
Plaza-Morlote, M.
Rubio, B.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv López Pérez, A.E.
Rey, D.
Martins, Virgínia
Plaza-Morlote, M.
Rubio, B.
dc.subject.por.fl_str_mv Galicia continental margin
Sedimentology
Facies analysis
Multivariate statistical analysis
ItraxTM core scanner
topic Galicia continental margin
Sedimentology
Facies analysis
Multivariate statistical analysis
ItraxTM core scanner
description The validity and usefulness of multivariate statistical tools for the facies characterization in deep-marine environments have been applied on the geochemical, sedimentological and magnetic data from a piston core extracted from the Transitional Zone in the Galician Continental Margin. The combination of geochemical profiles of Fe, Mn, Ti, Ba and Ca and magnetic susceptibility (MS) obtained using the ItraxTM Core Scanner at the University of Vigo, together with the grain-size, grey level and R (red) G (green) B (blue) colour analyses have allowed characterizing and classifying the sediments of the core PC13-3 using SPSS package v. 23. Cluster Analysis (CA) displays, in the first level of the hierarchy, two major groups that correspond with clay-silt and sand facies. In a second level, it is possible to observe six subfacies that match de visu preliminary classification and allowed us to complete and improve the characterization and the facies limits in the whole core. Discriminant Analysis (DA) confirmed the validity of the cluster analyses and enhanced the results of the classification. The Principal Component Analysis (PCA) shows four principal components: coarse lithogenic fraction (PC1), fine lithogenic fraction (PC2), high density fraction (PC3) and biogenic fraction (PC4). These results are in concordance with the Pearson correlation coefficient and the SEM observations. In general terms, the results confirm the utility of the multivariate statistical methods applied on high resolution geochemical and magnetic data acquired with ItraxTM corer scanner, as a quick and complementary tool in sedimentary facies analysis and description in deep marine environments.
publishDate 2019
dc.date.none.fl_str_mv 2019-04-30T00:00:00Z
2019-04-30
2023-03-31T14:31:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36778
url http://hdl.handle.net/10773/36778
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1040-6182
10.1016/j.quaint.2018.06.035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137729856929792