Development of a minicircular DNA vaccine against COVID-19

Detalhes bibliográficos
Autor(a) principal: Ventura, Cathy Lopes
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/13046
Resumo: Nucleic acid vaccines have proven to be a promising technology in the fight against global threats such as coronavirus disease (COVID-19). Minicircle DNA (mcDNA) is an innovative vector more stable than messenger RNA and more efficient in cell transfection and transgene expression than conventional plasmid DNA. This work describes the construction of a parental plasmid (PP) vector encoding the receptorbinding domain (RBD) of the S protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the use of the Design of Experiments (DoE) to optimize PP recombination into mcDNA vector in an orbital shaker. First, the results revealed that host cells should be grown at 42 °C and the Terrific Broth (TB) medium should be replaced by Luria Broth (LB) medium containing 0.01% L-arabinose for the induction step. The antibiotic concentration, the induction time, and the induction temperature were used as DoE inputs to maximize the % of recombined mcDNA. The quadratic model was statistically significant (p-value < 0.05) and presented a nonsignificant lack of fit (p-value > 0.05) with a suitable coefficient of determination. The production of mcDNA was then maximized in a mini-bioreactor platform. The most favorable condition obtained in the bioreactor was obtained by applying 60% pO2 in the fermentation step during 5 h and 30% pO2 in the induction step, with 0.01% L-arabinose throughout 5 h. The application of delivery systems improves the DNA vaccines efficacy and allows their targeting when functionalized with specific ligands. In this work were explored two chitosan (Ch) polymers to formulate different Ch-TPP/R8 and R8-mannose based nanosystems for the delivery of a new mcDNA vaccine against COVID-19, encoding the receptor-binding domain (RBD) gene of severe acute respiratory syndrome coronavirus (SARS-CoV-2). For this purpose, different ratios of TPP, R8 and R8-mannose were evaluated. All systems were formulated using the ionotropic gelation technique and their size, surface charge, encapsulation efficiency and stability were subsequently evaluated. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were also performed to ascertain the functional groups on the surface of the nanoparticles and their shape and morphology, respectively. Two cell lines, human fibroblasts (h-Fibro) and immature dendritic cells (JAWS II) were used in in vitro studies to evaluate the compatibility, transfection efficiency and gene expression of formulated systems. The 3-[4,5- dimethylthiazol2-yl]-2,5-diphenyltetrazolium (MTT) assays showed the biosafety of all Ch-based nanosystems. Subsequently, confocal microscopy studies were performed on dendritic cells (JAWSii), to verify the difference in internalization of non-mannosylated and mannosylated systems in APCs. Systems functionalized with R8-mannose showed better internalization into the cells.
id RCAP_f689e49bc49d459b3c1992309fc008a8
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/13046
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of a minicircular DNA vaccine against COVID-19Covid-19Maximização do McdnaQuitosanoSistemas de EntregaVacinas de DnaDomínio/Área Científica::Ciências Médicas::Ciências BiomédicasNucleic acid vaccines have proven to be a promising technology in the fight against global threats such as coronavirus disease (COVID-19). Minicircle DNA (mcDNA) is an innovative vector more stable than messenger RNA and more efficient in cell transfection and transgene expression than conventional plasmid DNA. This work describes the construction of a parental plasmid (PP) vector encoding the receptorbinding domain (RBD) of the S protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the use of the Design of Experiments (DoE) to optimize PP recombination into mcDNA vector in an orbital shaker. First, the results revealed that host cells should be grown at 42 °C and the Terrific Broth (TB) medium should be replaced by Luria Broth (LB) medium containing 0.01% L-arabinose for the induction step. The antibiotic concentration, the induction time, and the induction temperature were used as DoE inputs to maximize the % of recombined mcDNA. The quadratic model was statistically significant (p-value < 0.05) and presented a nonsignificant lack of fit (p-value > 0.05) with a suitable coefficient of determination. The production of mcDNA was then maximized in a mini-bioreactor platform. The most favorable condition obtained in the bioreactor was obtained by applying 60% pO2 in the fermentation step during 5 h and 30% pO2 in the induction step, with 0.01% L-arabinose throughout 5 h. The application of delivery systems improves the DNA vaccines efficacy and allows their targeting when functionalized with specific ligands. In this work were explored two chitosan (Ch) polymers to formulate different Ch-TPP/R8 and R8-mannose based nanosystems for the delivery of a new mcDNA vaccine against COVID-19, encoding the receptor-binding domain (RBD) gene of severe acute respiratory syndrome coronavirus (SARS-CoV-2). For this purpose, different ratios of TPP, R8 and R8-mannose were evaluated. All systems were formulated using the ionotropic gelation technique and their size, surface charge, encapsulation efficiency and stability were subsequently evaluated. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were also performed to ascertain the functional groups on the surface of the nanoparticles and their shape and morphology, respectively. Two cell lines, human fibroblasts (h-Fibro) and immature dendritic cells (JAWS II) were used in in vitro studies to evaluate the compatibility, transfection efficiency and gene expression of formulated systems. The 3-[4,5- dimethylthiazol2-yl]-2,5-diphenyltetrazolium (MTT) assays showed the biosafety of all Ch-based nanosystems. Subsequently, confocal microscopy studies were performed on dendritic cells (JAWSii), to verify the difference in internalization of non-mannosylated and mannosylated systems in APCs. Systems functionalized with R8-mannose showed better internalization into the cells.As vacinas de ácidos nucleicos provaram ser uma tecnologia promissora na luta contra ameaças globais como a doença coronavírus (COVID-19). O DNA minicircular (mcDNA) é um vetor inovador, mais estável do que o RNA mensageiro e mais eficiente na transfecção celular e expressão transgénica do que o DNA plasmídico convencional. Este trabalho descreve a construção de um vetor de plasmídeo parental (PP) que codifica o domínio de ligação ao recetor (RBD) da proteína S da Síndrome Respiratória Aguda Severa do coronavírus (SARS-CoV-2), e a utilização do Desenho Experimental (DoE) para otimizar a recombinação do PP em mcDNA no agitador orbital. Primeiro, os resultados revelaram que as células hospedeiras devem ser cultivadas a 42 °C com meio Terrific Broth (TB) e, posteriormente, deve ser substituído por meio Luria Broth (LB) contendo 0,01% de L-arabinose para a etapa de indução. A concentração de antibióticos, o tempo de indução, e a temperatura de indução foram utilizados como inputs para o DoE com o intuito de maximizar a % de mcDNA recombinado. O modelo quadrático foi estatisticamente significativo (p < 0,05) e apresentou um lack of fit não significativo (p > 0,05) com um coeficiente de determinação adequado. A produção de mcDNA foi então maximizada numa plataforma de mini-bioreactor. A condição mais favorável no biorreator foi obtida aplicando 60% pO2 na etapa de fermentação durante 5 h e 30% pO2 na etapa de indução, com 0,01% de L-arabinose durante 5 h. A aplicação de sistemas de entrega melhora a eficácia das vacinas de DNA e permite o seu direcionamento quando funcionalizadas com ligandos específicos. O quitosano (Ch) é um polímero natural catiónico, conhecido pelas suas propriedades biodegradáveis, biocompatíveis, mucoadesivas e de baixa citotoxicidade, e tem sido explorado na formulação de sistemas de entrega de biofármacos. A complementação com tripolifosfato (TPP) permite a criação de um sistema de estabilização reticulado através de interações eletrostáticas entre as cargas positivas de Ch e as cargas negativas do TPP e do DNA. A funcionalização com um péptido de penetração celular, como a octa-arginina (R8) melhora a capacidade de penetração e de entrega de biomoléculas. A decoração dos sistemas de entrega com ligandos de manose favorece o reconhecimento específico pelos recetores de manose sobrexpressos na superfície das células apresentadoras de antigénios (APCs). Neste trabalho foram explorados dois polímeros de Ch (HMW e 5 kDa) para formular diferentes nanosistemas baseados em Ch-TPP/R8 e R8-manose para a obtenção de uma nova vacina contra COVID-19, codificando o gene RBD do SARS-CoV-2. Para este efeito, foram avaliados diferentes rácios de TPP, R8 e R8-manose. Todos os sistemas foram formulados utilizando a técnica de ionotropic gelation e o seu tamanho, carga superficial, eficiência de encapsulação e estabilidade foram subsequentemente avaliados. A espectroscopia de infravermelho por transformada de Fourier (FTIR) e a microscopia eletrónica de varrimento (SEM) foram também realizadas para determinar os grupos funcionais presentes na superfície das nanopartículas e a sua forma e morfologia, respetivamente. Duas linhas celulares, fibroblastos humanos (h-Fibro) e células dendríticas imaturas (JAWS II), foram utilizadas em estudos in vitro para avaliar a biocompatibilidade, eficiência da transfecção e expressão génica dos sistemas formulados. Os ensaios de 3-[4,5- dimetiltiazol-2-il]-2,5-difeniltetrazólio (MTT) mostraram a biossegurança de todos os nanosistemas baseados em Ch. Posteriormente, foram efetuados estudos de microscopia confocal em células dendríticas (JAWSii), para verificar a diferença na internalização de sistemas não-manosilados e manosilados em APCs. Este trabalho revelou que a aplicação do biorreator aumentou fortemente o rendimento da biomassa do hospedeiro e simultaneamente melhorou os níveis de recombinação do PP em mcDNA. Adicionalmente, o uso de sistemas de entrega baseados em quitosano mostra um enorme potential para entrega da vacina de DNA, sendo que os sistemas manosilados permitem uma entrega direcionada às APCs melhoram a internalização da vacina de DNA.Sousa, Ângela Maria Almeida deCosta, Diana Rita BaratauBibliorumVentura, Cathy Lopes2023-10-04T00:30:34Z2022-11-222022-10-072022-11-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/13046TID:203220013enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:56:28Zoai:ubibliorum.ubi.pt:10400.6/13046Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:52:33.585588Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of a minicircular DNA vaccine against COVID-19
title Development of a minicircular DNA vaccine against COVID-19
spellingShingle Development of a minicircular DNA vaccine against COVID-19
Ventura, Cathy Lopes
Covid-19
Maximização do Mcdna
Quitosano
Sistemas de Entrega
Vacinas de Dna
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
title_short Development of a minicircular DNA vaccine against COVID-19
title_full Development of a minicircular DNA vaccine against COVID-19
title_fullStr Development of a minicircular DNA vaccine against COVID-19
title_full_unstemmed Development of a minicircular DNA vaccine against COVID-19
title_sort Development of a minicircular DNA vaccine against COVID-19
author Ventura, Cathy Lopes
author_facet Ventura, Cathy Lopes
author_role author
dc.contributor.none.fl_str_mv Sousa, Ângela Maria Almeida de
Costa, Diana Rita Barata
uBibliorum
dc.contributor.author.fl_str_mv Ventura, Cathy Lopes
dc.subject.por.fl_str_mv Covid-19
Maximização do Mcdna
Quitosano
Sistemas de Entrega
Vacinas de Dna
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
topic Covid-19
Maximização do Mcdna
Quitosano
Sistemas de Entrega
Vacinas de Dna
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
description Nucleic acid vaccines have proven to be a promising technology in the fight against global threats such as coronavirus disease (COVID-19). Minicircle DNA (mcDNA) is an innovative vector more stable than messenger RNA and more efficient in cell transfection and transgene expression than conventional plasmid DNA. This work describes the construction of a parental plasmid (PP) vector encoding the receptorbinding domain (RBD) of the S protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the use of the Design of Experiments (DoE) to optimize PP recombination into mcDNA vector in an orbital shaker. First, the results revealed that host cells should be grown at 42 °C and the Terrific Broth (TB) medium should be replaced by Luria Broth (LB) medium containing 0.01% L-arabinose for the induction step. The antibiotic concentration, the induction time, and the induction temperature were used as DoE inputs to maximize the % of recombined mcDNA. The quadratic model was statistically significant (p-value < 0.05) and presented a nonsignificant lack of fit (p-value > 0.05) with a suitable coefficient of determination. The production of mcDNA was then maximized in a mini-bioreactor platform. The most favorable condition obtained in the bioreactor was obtained by applying 60% pO2 in the fermentation step during 5 h and 30% pO2 in the induction step, with 0.01% L-arabinose throughout 5 h. The application of delivery systems improves the DNA vaccines efficacy and allows their targeting when functionalized with specific ligands. In this work were explored two chitosan (Ch) polymers to formulate different Ch-TPP/R8 and R8-mannose based nanosystems for the delivery of a new mcDNA vaccine against COVID-19, encoding the receptor-binding domain (RBD) gene of severe acute respiratory syndrome coronavirus (SARS-CoV-2). For this purpose, different ratios of TPP, R8 and R8-mannose were evaluated. All systems were formulated using the ionotropic gelation technique and their size, surface charge, encapsulation efficiency and stability were subsequently evaluated. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were also performed to ascertain the functional groups on the surface of the nanoparticles and their shape and morphology, respectively. Two cell lines, human fibroblasts (h-Fibro) and immature dendritic cells (JAWS II) were used in in vitro studies to evaluate the compatibility, transfection efficiency and gene expression of formulated systems. The 3-[4,5- dimethylthiazol2-yl]-2,5-diphenyltetrazolium (MTT) assays showed the biosafety of all Ch-based nanosystems. Subsequently, confocal microscopy studies were performed on dendritic cells (JAWSii), to verify the difference in internalization of non-mannosylated and mannosylated systems in APCs. Systems functionalized with R8-mannose showed better internalization into the cells.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-22
2022-10-07
2022-11-22T00:00:00Z
2023-10-04T00:30:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/13046
TID:203220013
url http://hdl.handle.net/10400.6/13046
identifier_str_mv TID:203220013
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136413620371456