Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands

Detalhes bibliográficos
Autor(a) principal: Dordio, Ana V.
Data de Publicação: 2008
Outros Autores: Pinto, Ana P., Palace Carvalho, A. J., Costa, Cristina
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/1193
Resumo: In recent years, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. Some compounds are just resistant to degradation in the sewage treatment plants (STPs) while others, although suffering partial degradation, still end up in receiving water bodies due to the large inputs received in STPs [1]. Clofibric acid (a metabolite from a series of widely used blood lipids lowering agents), ibuprofen (an anti-inflamatory non-prescription drug) and carbamazepine (an anticonvulsant and mood stabilizing drug) are some of the most frequently found PhACs in environmental monitoring studies [1]. Wastewater treatment by sub-surface flow constructed wetland systems (SSF-CWs) is a low-cost technology that has shown some capacity for removal of several organic xenobiotic pollutants, but fewer studies exist on pharmaceuticals behavior. The aim of the present work was to evaluate the efficiency of a pilot SSF-CW assembled with the plants cattail (Typha spp.) and a clay material (LECA 2/4) as support matrix, for the removal of three pharmaceuticals, namely ibuprofen (IB), carbamazepine (CB) and clofibric acid (CA), from contaminated wastewaters. Four beds were planted with pre-grown cattails (density of 80 plants/m2) and four were left unplanted to be used as controls. Experiments were conducted both in batch and in continuous mode with a flooding rate of 100%. Pharmaceutical concentrations were quantified by HPLC with UV detection at 210 nm (CB), 222 nm (IB) and 230 nm (CA). Solid phase extraction was used for sample pre-concentration whenever the measured pharmaceutical concentrations fell under the limit of quantification of the analytical method. The physico-chemical characterization of the support matrix material, LECA, involved the determination of properties such as pH, point of zero charge, electrical conductivity, apparent porosity, bulk density and hydraulic conductivity. In order to shed some light on the tolerance mechanisms developed by Typha spp. in the presence of these pharmaceuticals, biochemical and physiological parameters were evaluated. Typha spp. showed good tolerance to the presence of CA, CB and IB concentrations of 1 mg L-1, which is a value much higher than those usually reported in wastewaters. LECA alone was able to remove about 90% of the initial amounts of CB and IB in solution, and 50% of CA. IB was very susceptible to microbial degradation and up to 80% of the initial concentration could be removed by the microbial population present in the wastewater used. Overall, the CWS shows a higher removal performance for CA, CB and IB than any of its individual components (plants, support matrix, microorganisms) considered separately. CA proved to be the most resilient compound, which comes in agreement with other published data. However, this system enabled the removal of substantially higher amounts of CA than has previously been reported in other studies. The use of systems of this kind for the removal of pharmaceuticals from wastewaters seems like a promising alternative to the less efficient processes of conventional wastewater treatment.
id RCAP_f6f57cc5a40f491675d6acd9a7fa2ab8
oai_identifier_str oai:dspace.uevora.pt:10174/1193
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlandspharmaceuticals removalconstructed wetlandsLECATyphaIn recent years, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. Some compounds are just resistant to degradation in the sewage treatment plants (STPs) while others, although suffering partial degradation, still end up in receiving water bodies due to the large inputs received in STPs [1]. Clofibric acid (a metabolite from a series of widely used blood lipids lowering agents), ibuprofen (an anti-inflamatory non-prescription drug) and carbamazepine (an anticonvulsant and mood stabilizing drug) are some of the most frequently found PhACs in environmental monitoring studies [1]. Wastewater treatment by sub-surface flow constructed wetland systems (SSF-CWs) is a low-cost technology that has shown some capacity for removal of several organic xenobiotic pollutants, but fewer studies exist on pharmaceuticals behavior. The aim of the present work was to evaluate the efficiency of a pilot SSF-CW assembled with the plants cattail (Typha spp.) and a clay material (LECA 2/4) as support matrix, for the removal of three pharmaceuticals, namely ibuprofen (IB), carbamazepine (CB) and clofibric acid (CA), from contaminated wastewaters. Four beds were planted with pre-grown cattails (density of 80 plants/m2) and four were left unplanted to be used as controls. Experiments were conducted both in batch and in continuous mode with a flooding rate of 100%. Pharmaceutical concentrations were quantified by HPLC with UV detection at 210 nm (CB), 222 nm (IB) and 230 nm (CA). Solid phase extraction was used for sample pre-concentration whenever the measured pharmaceutical concentrations fell under the limit of quantification of the analytical method. The physico-chemical characterization of the support matrix material, LECA, involved the determination of properties such as pH, point of zero charge, electrical conductivity, apparent porosity, bulk density and hydraulic conductivity. In order to shed some light on the tolerance mechanisms developed by Typha spp. in the presence of these pharmaceuticals, biochemical and physiological parameters were evaluated. Typha spp. showed good tolerance to the presence of CA, CB and IB concentrations of 1 mg L-1, which is a value much higher than those usually reported in wastewaters. LECA alone was able to remove about 90% of the initial amounts of CB and IB in solution, and 50% of CA. IB was very susceptible to microbial degradation and up to 80% of the initial concentration could be removed by the microbial population present in the wastewater used. Overall, the CWS shows a higher removal performance for CA, CB and IB than any of its individual components (plants, support matrix, microorganisms) considered separately. CA proved to be the most resilient compound, which comes in agreement with other published data. However, this system enabled the removal of substantially higher amounts of CA than has previously been reported in other studies. The use of systems of this kind for the removal of pharmaceuticals from wastewaters seems like a promising alternative to the less efficient processes of conventional wastewater treatment.2008-06-03T10:38:41Z2008-06-032008-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject77951 bytesapplication/pdfhttp://hdl.handle.net/10174/1193http://hdl.handle.net/10174/1193engNîmes, FranceComunicação oral apresentada na conferência "Pharmaceutical products in the environment: trends toward lowering occurrence and impact"simnaonaolivreavbd@uevora.ptapp@uevora.ptajpalace@uevora.ptcmtc@uevora.ptDordio, Ana V.Pinto, Ana P.Palace Carvalho, A. J.Costa, Cristinainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:36:55Zoai:dspace.uevora.pt:10174/1193Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:57:14.525930Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
title Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
spellingShingle Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
Dordio, Ana V.
pharmaceuticals removal
constructed wetlands
LECA
Typha
title_short Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
title_full Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
title_fullStr Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
title_full_unstemmed Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
title_sort Pilot-scale study on the removal of pharmaceuticals by LECA based SSF-constructed wetlands
author Dordio, Ana V.
author_facet Dordio, Ana V.
Pinto, Ana P.
Palace Carvalho, A. J.
Costa, Cristina
author_role author
author2 Pinto, Ana P.
Palace Carvalho, A. J.
Costa, Cristina
author2_role author
author
author
dc.contributor.author.fl_str_mv Dordio, Ana V.
Pinto, Ana P.
Palace Carvalho, A. J.
Costa, Cristina
dc.subject.por.fl_str_mv pharmaceuticals removal
constructed wetlands
LECA
Typha
topic pharmaceuticals removal
constructed wetlands
LECA
Typha
description In recent years, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment has been recognized as one of the emerging issues in environmental chemistry. Some compounds are just resistant to degradation in the sewage treatment plants (STPs) while others, although suffering partial degradation, still end up in receiving water bodies due to the large inputs received in STPs [1]. Clofibric acid (a metabolite from a series of widely used blood lipids lowering agents), ibuprofen (an anti-inflamatory non-prescription drug) and carbamazepine (an anticonvulsant and mood stabilizing drug) are some of the most frequently found PhACs in environmental monitoring studies [1]. Wastewater treatment by sub-surface flow constructed wetland systems (SSF-CWs) is a low-cost technology that has shown some capacity for removal of several organic xenobiotic pollutants, but fewer studies exist on pharmaceuticals behavior. The aim of the present work was to evaluate the efficiency of a pilot SSF-CW assembled with the plants cattail (Typha spp.) and a clay material (LECA 2/4) as support matrix, for the removal of three pharmaceuticals, namely ibuprofen (IB), carbamazepine (CB) and clofibric acid (CA), from contaminated wastewaters. Four beds were planted with pre-grown cattails (density of 80 plants/m2) and four were left unplanted to be used as controls. Experiments were conducted both in batch and in continuous mode with a flooding rate of 100%. Pharmaceutical concentrations were quantified by HPLC with UV detection at 210 nm (CB), 222 nm (IB) and 230 nm (CA). Solid phase extraction was used for sample pre-concentration whenever the measured pharmaceutical concentrations fell under the limit of quantification of the analytical method. The physico-chemical characterization of the support matrix material, LECA, involved the determination of properties such as pH, point of zero charge, electrical conductivity, apparent porosity, bulk density and hydraulic conductivity. In order to shed some light on the tolerance mechanisms developed by Typha spp. in the presence of these pharmaceuticals, biochemical and physiological parameters were evaluated. Typha spp. showed good tolerance to the presence of CA, CB and IB concentrations of 1 mg L-1, which is a value much higher than those usually reported in wastewaters. LECA alone was able to remove about 90% of the initial amounts of CB and IB in solution, and 50% of CA. IB was very susceptible to microbial degradation and up to 80% of the initial concentration could be removed by the microbial population present in the wastewater used. Overall, the CWS shows a higher removal performance for CA, CB and IB than any of its individual components (plants, support matrix, microorganisms) considered separately. CA proved to be the most resilient compound, which comes in agreement with other published data. However, this system enabled the removal of substantially higher amounts of CA than has previously been reported in other studies. The use of systems of this kind for the removal of pharmaceuticals from wastewaters seems like a promising alternative to the less efficient processes of conventional wastewater treatment.
publishDate 2008
dc.date.none.fl_str_mv 2008-06-03T10:38:41Z
2008-06-03
2008-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/1193
http://hdl.handle.net/10174/1193
url http://hdl.handle.net/10174/1193
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nîmes, France
Comunicação oral apresentada na conferência "Pharmaceutical products in the environment: trends toward lowering occurrence and impact"
sim
nao
nao
livre
avbd@uevora.pt
app@uevora.pt
ajpalace@uevora.pt
cmtc@uevora.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 77951 bytes
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136457074409472