Expansiveness and hyperbolicity in convex billiards
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/75225 |
Resumo: | We say that a convex planar billiard table B is C^2-stably expansive on a fixed open subset U of the phase space if its billiard map f_B is expansive on the maximal invariant set Λ_(B,U) = ∩_(n∈Z ) f_B^n(U), and this property holds under C^2 perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of f_B in Λ_(B,U) is uniformly hyperbolic. In addition we show that this property also holds for a generic choice among billiards which are expansive. |
id |
RCAP_f702f6bce8c007c3fa8231164918073f |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/75225 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Expansiveness and hyperbolicity in convex billiardsConvex planar billiardsHyperbolic setsExpansivenessCiências Naturais::MatemáticasScience & TechnologyWe say that a convex planar billiard table B is C^2-stably expansive on a fixed open subset U of the phase space if its billiard map f_B is expansive on the maximal invariant set Λ_(B,U) = ∩_(n∈Z ) f_B^n(U), and this property holds under C^2 perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of f_B in Λ_(B,U) is uniformly hyperbolic. In addition we show that this property also holds for a generic choice among billiards which are expansive.The authors were partially funded by the project "New Trends in Lyapunov Exponents" PTDC/MAT-PUR/29126/2017 financed by Fundacao para a Ciencia e a Tecnologia, Portugal.MB would also like to thank CMUP for providing the necessary conditions under which this work was developed. JLD was also partially funded by the Project CEMAPRE-UID/MULTI/00491/2019 financed by Fundacao para a Ciencia e a Tecnologia. MJT was also partially financed by national funds through Fundacao para a Ciencia e a Tecnologia within the projects UIDB/00013/2020 and UIDP/00013/2020.SpringerUniversidade do MinhoBessa, MárioDias, João LopesTorres, M. J.20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/75225eng1560-35471468-484510.1134/S1560354721060125https://link.springer.com/article/10.1134/S1560354721060125info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:11:54Zoai:repositorium.sdum.uminho.pt:1822/75225Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:03:44.682942Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Expansiveness and hyperbolicity in convex billiards |
title |
Expansiveness and hyperbolicity in convex billiards |
spellingShingle |
Expansiveness and hyperbolicity in convex billiards Bessa, Mário Convex planar billiards Hyperbolic sets Expansiveness Ciências Naturais::Matemáticas Science & Technology |
title_short |
Expansiveness and hyperbolicity in convex billiards |
title_full |
Expansiveness and hyperbolicity in convex billiards |
title_fullStr |
Expansiveness and hyperbolicity in convex billiards |
title_full_unstemmed |
Expansiveness and hyperbolicity in convex billiards |
title_sort |
Expansiveness and hyperbolicity in convex billiards |
author |
Bessa, Mário |
author_facet |
Bessa, Mário Dias, João Lopes Torres, M. J. |
author_role |
author |
author2 |
Dias, João Lopes Torres, M. J. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Bessa, Mário Dias, João Lopes Torres, M. J. |
dc.subject.por.fl_str_mv |
Convex planar billiards Hyperbolic sets Expansiveness Ciências Naturais::Matemáticas Science & Technology |
topic |
Convex planar billiards Hyperbolic sets Expansiveness Ciências Naturais::Matemáticas Science & Technology |
description |
We say that a convex planar billiard table B is C^2-stably expansive on a fixed open subset U of the phase space if its billiard map f_B is expansive on the maximal invariant set Λ_(B,U) = ∩_(n∈Z ) f_B^n(U), and this property holds under C^2 perturbations of the billiard table. In this note we prove for such billiards that the closure of the set of periodic points of f_B in Λ_(B,U) is uniformly hyperbolic. In addition we show that this property also holds for a generic choice among billiards which are expansive. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/75225 |
url |
https://hdl.handle.net/1822/75225 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1560-3547 1468-4845 10.1134/S1560354721060125 https://link.springer.com/article/10.1134/S1560354721060125 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132444362801152 |