Framework for clinical data visualization based on open-source software
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/24939 |
Resumo: | Healthcare providers are faced with the challenge of going through large amounts of data in search of answers to complex questions. On top of that, medical sta typically don't have database knowledge, and so, it is necessary to provide them with tools that allows the visualization of reports, charts and dashboards, without having to interact or even see query languages, ideally on the same platforms where data is generated. Embedding Business Intelligence (BI) has emerged as a possible solution to this issue, providing end-user with tools that enables them to explore data in a simpli ed way. Thus, the application where the solution was embedded not only is enhanced, but the necessity for data analysis stand-alone tools is eliminated. This thesis starts by analyzing if integrating a BI solution into medical platforms is plausible, by presenting the main characteristics of clinical data, followed by an overview of the state of the art on open-source Business Intelligence software. Then, a solution proposal is presented where the development of an embedded solution is pragmatically addressed. Finally, case studies where the integration of the work developed was integrated will be presented, in order to evaluate its applicability and integrability. |
id |
RCAP_f7274b92badc776db99e6455fe18eb19 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/24939 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Framework for clinical data visualization based on open-source softwareData analysisInformation visualisationBusiness IntelligenceKnowledge management in healthcareHealthcare providers are faced with the challenge of going through large amounts of data in search of answers to complex questions. On top of that, medical sta typically don't have database knowledge, and so, it is necessary to provide them with tools that allows the visualization of reports, charts and dashboards, without having to interact or even see query languages, ideally on the same platforms where data is generated. Embedding Business Intelligence (BI) has emerged as a possible solution to this issue, providing end-user with tools that enables them to explore data in a simpli ed way. Thus, the application where the solution was embedded not only is enhanced, but the necessity for data analysis stand-alone tools is eliminated. This thesis starts by analyzing if integrating a BI solution into medical platforms is plausible, by presenting the main characteristics of clinical data, followed by an overview of the state of the art on open-source Business Intelligence software. Then, a solution proposal is presented where the development of an embedded solution is pragmatically addressed. Finally, case studies where the integration of the work developed was integrated will be presented, in order to evaluate its applicability and integrability.Os profissionais de saúde enfrentam constantemente o desafio de analisar grandes quantidades de dados médicos na procura de respostas para questões complexas. Além disso, estes profissionais não têm conhecimentos de linguagens para consultas de bases de dados. Portanto, é necessário providenciar aos profissionais de saúde ferramentas que lhes permitam visualizar relatórios, gráficos e dashboards, sem que seja necessário interagir com linguagens de consulta, idealmente nas plataformas onde os dados são gerados. Integrar soluções de Business Intelligence (BI) em aplicações já existentes surge como uma possível solução para este problema, providenciando recursos aos utilizadores finais que lhes permitam explorar dados de uma forma simplificada. Deste modo, não só é valorizada a aplicação onde ocorre a integração, como é eliminada a necessidade de plataformas destacadas para análise de dados. Esta dissertação começa por analisar se a integração de soluções BI na área da saúde é viável, apresentando as principais caracteristicas de dados clínicos, bem como um estado de arte das soluções Business Intelligence existentes. De seguida, é apresentada uma proposta de solução, onde o desenvolvimento de uma solução integrável é detalhadamente descrito. Por fim, serão apresentados casos de estudo onde a integração do trabalho desenvolvido ocorreu, de forma a avaliar a sua aplicabilidade e integrabilidade.2020-07-30T00:00:00Z2018-07-18T00:00:00Z2018-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/24939TID:202232689engSacchetti, Rui Maia Barretoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:48:47Zoai:ria.ua.pt:10773/24939Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:58:27.743507Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Framework for clinical data visualization based on open-source software |
title |
Framework for clinical data visualization based on open-source software |
spellingShingle |
Framework for clinical data visualization based on open-source software Sacchetti, Rui Maia Barreto Data analysis Information visualisation Business Intelligence Knowledge management in healthcare |
title_short |
Framework for clinical data visualization based on open-source software |
title_full |
Framework for clinical data visualization based on open-source software |
title_fullStr |
Framework for clinical data visualization based on open-source software |
title_full_unstemmed |
Framework for clinical data visualization based on open-source software |
title_sort |
Framework for clinical data visualization based on open-source software |
author |
Sacchetti, Rui Maia Barreto |
author_facet |
Sacchetti, Rui Maia Barreto |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sacchetti, Rui Maia Barreto |
dc.subject.por.fl_str_mv |
Data analysis Information visualisation Business Intelligence Knowledge management in healthcare |
topic |
Data analysis Information visualisation Business Intelligence Knowledge management in healthcare |
description |
Healthcare providers are faced with the challenge of going through large amounts of data in search of answers to complex questions. On top of that, medical sta typically don't have database knowledge, and so, it is necessary to provide them with tools that allows the visualization of reports, charts and dashboards, without having to interact or even see query languages, ideally on the same platforms where data is generated. Embedding Business Intelligence (BI) has emerged as a possible solution to this issue, providing end-user with tools that enables them to explore data in a simpli ed way. Thus, the application where the solution was embedded not only is enhanced, but the necessity for data analysis stand-alone tools is eliminated. This thesis starts by analyzing if integrating a BI solution into medical platforms is plausible, by presenting the main characteristics of clinical data, followed by an overview of the state of the art on open-source Business Intelligence software. Then, a solution proposal is presented where the development of an embedded solution is pragmatically addressed. Finally, case studies where the integration of the work developed was integrated will be presented, in order to evaluate its applicability and integrability. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-18T00:00:00Z 2018-07-18 2020-07-30T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/24939 TID:202232689 |
url |
http://hdl.handle.net/10773/24939 |
identifier_str_mv |
TID:202232689 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137639000965120 |