Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival

Detalhes bibliográficos
Autor(a) principal: Pires, Joel Pereira
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/3228
Resumo: Microglia cells, the resident immune cells in the brain, play a critical role in the development and progression of several neurodegenerative diseases. Parkinson's disease (PD) is a neurodegenerative disorder characterized by a dramatic loss of dopaminergic neurons (DA) in the substantia nigra (SN), striatal dopamine depletion and motor impairments. Accumulating clinical and experimental evidences suggest that neuroinflammation plays a critical role in the pathogenesis of PD through the activation of microglia cells and the subsequent production of a vast array of inflammatory mediators, including nitric oxide (NO). Histamine (HIS), an amine that acts as a neurotransmitter and inflammatory mediator, has been reported to play a role in the pathogenesis of PD. Indeed, alterations in the histaminergic innervations in the striatum and SN and increased histamine concentrations in the blood, striatum and SN were found in PD patients. Based on these data, our aim was to uncover the effects of histamine on microglia cells derived from the SN of Wistar rats and then evaluate whether soluble factors released by microglia previously stimulated with histamine could modulate dopaminergic neuronal survival. Firstly, microglia cell cultures were used to study the effects of HIS and its receptors on NO production, which was measured by the Griess assay. We demonstrated that HIS triggered an increase of NO production as compared with control, an effect mediated by histamine H4 receptor (H4R) activation. Interestingly, in the presence of an inflammatory context, mimicked by lipopolysaccharide (LPS), HIS inhibited LPS-induced NO production not only by H4R but, possibly through histamine H1 receptor (H1R) activation. Then, conditioned medium derived from microglia cells (MCM) challenged with HIS and/or LPS was collected to evaluate its effects on the viability of DA neurons present in neuron-astrocyte midbrain co-cultures. In fact, conditioned medium derived from microglia cells exposed to LPS or HIS induced a decrease in the number of Tyrosine Hydroxylase positive neurons; whereas this noxious effect was abolished when MCM obtained from microglia challenged with HIS plus LPS was used. Curiously, the same effects were observed when HIS and/or LPS were added directly on neuron-astrocyte midbrain co-cultures. Together, our results suggest that HIS per se acts as a pro-inflammatory mediator, whereas, in an inflammatory context, HIS has a putative anti-inflammatory profile that can protect dopaminergic neurons.
id RCAP_f7c08d916fb89919be56d4fff03d4ce3
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/3228
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survivalNeuroinflamaçãoDoença de ParkinsonMicroglia cells, the resident immune cells in the brain, play a critical role in the development and progression of several neurodegenerative diseases. Parkinson's disease (PD) is a neurodegenerative disorder characterized by a dramatic loss of dopaminergic neurons (DA) in the substantia nigra (SN), striatal dopamine depletion and motor impairments. Accumulating clinical and experimental evidences suggest that neuroinflammation plays a critical role in the pathogenesis of PD through the activation of microglia cells and the subsequent production of a vast array of inflammatory mediators, including nitric oxide (NO). Histamine (HIS), an amine that acts as a neurotransmitter and inflammatory mediator, has been reported to play a role in the pathogenesis of PD. Indeed, alterations in the histaminergic innervations in the striatum and SN and increased histamine concentrations in the blood, striatum and SN were found in PD patients. Based on these data, our aim was to uncover the effects of histamine on microglia cells derived from the SN of Wistar rats and then evaluate whether soluble factors released by microglia previously stimulated with histamine could modulate dopaminergic neuronal survival. Firstly, microglia cell cultures were used to study the effects of HIS and its receptors on NO production, which was measured by the Griess assay. We demonstrated that HIS triggered an increase of NO production as compared with control, an effect mediated by histamine H4 receptor (H4R) activation. Interestingly, in the presence of an inflammatory context, mimicked by lipopolysaccharide (LPS), HIS inhibited LPS-induced NO production not only by H4R but, possibly through histamine H1 receptor (H1R) activation. Then, conditioned medium derived from microglia cells (MCM) challenged with HIS and/or LPS was collected to evaluate its effects on the viability of DA neurons present in neuron-astrocyte midbrain co-cultures. In fact, conditioned medium derived from microglia cells exposed to LPS or HIS induced a decrease in the number of Tyrosine Hydroxylase positive neurons; whereas this noxious effect was abolished when MCM obtained from microglia challenged with HIS plus LPS was used. Curiously, the same effects were observed when HIS and/or LPS were added directly on neuron-astrocyte midbrain co-cultures. Together, our results suggest that HIS per se acts as a pro-inflammatory mediator, whereas, in an inflammatory context, HIS has a putative anti-inflammatory profile that can protect dopaminergic neurons.Bernardino, Liliana InácioBaltazar, Graça Maria FernandesuBibliorumPires, Joel Pereira2015-04-10T08:49:32Z20122012-102012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/3228enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:39:34Zoai:ubibliorum.ubi.pt:10400.6/3228Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:44:42.565702Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
title Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
spellingShingle Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
Pires, Joel Pereira
Neuroinflamação
Doença de Parkinson
title_short Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
title_full Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
title_fullStr Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
title_full_unstemmed Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
title_sort Histamine modulates nitric oxide release by microglia and dopaminergic neuronal survival
author Pires, Joel Pereira
author_facet Pires, Joel Pereira
author_role author
dc.contributor.none.fl_str_mv Bernardino, Liliana Inácio
Baltazar, Graça Maria Fernandes
uBibliorum
dc.contributor.author.fl_str_mv Pires, Joel Pereira
dc.subject.por.fl_str_mv Neuroinflamação
Doença de Parkinson
topic Neuroinflamação
Doença de Parkinson
description Microglia cells, the resident immune cells in the brain, play a critical role in the development and progression of several neurodegenerative diseases. Parkinson's disease (PD) is a neurodegenerative disorder characterized by a dramatic loss of dopaminergic neurons (DA) in the substantia nigra (SN), striatal dopamine depletion and motor impairments. Accumulating clinical and experimental evidences suggest that neuroinflammation plays a critical role in the pathogenesis of PD through the activation of microglia cells and the subsequent production of a vast array of inflammatory mediators, including nitric oxide (NO). Histamine (HIS), an amine that acts as a neurotransmitter and inflammatory mediator, has been reported to play a role in the pathogenesis of PD. Indeed, alterations in the histaminergic innervations in the striatum and SN and increased histamine concentrations in the blood, striatum and SN were found in PD patients. Based on these data, our aim was to uncover the effects of histamine on microglia cells derived from the SN of Wistar rats and then evaluate whether soluble factors released by microglia previously stimulated with histamine could modulate dopaminergic neuronal survival. Firstly, microglia cell cultures were used to study the effects of HIS and its receptors on NO production, which was measured by the Griess assay. We demonstrated that HIS triggered an increase of NO production as compared with control, an effect mediated by histamine H4 receptor (H4R) activation. Interestingly, in the presence of an inflammatory context, mimicked by lipopolysaccharide (LPS), HIS inhibited LPS-induced NO production not only by H4R but, possibly through histamine H1 receptor (H1R) activation. Then, conditioned medium derived from microglia cells (MCM) challenged with HIS and/or LPS was collected to evaluate its effects on the viability of DA neurons present in neuron-astrocyte midbrain co-cultures. In fact, conditioned medium derived from microglia cells exposed to LPS or HIS induced a decrease in the number of Tyrosine Hydroxylase positive neurons; whereas this noxious effect was abolished when MCM obtained from microglia challenged with HIS plus LPS was used. Curiously, the same effects were observed when HIS and/or LPS were added directly on neuron-astrocyte midbrain co-cultures. Together, our results suggest that HIS per se acts as a pro-inflammatory mediator, whereas, in an inflammatory context, HIS has a putative anti-inflammatory profile that can protect dopaminergic neurons.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-10
2012-01-01T00:00:00Z
2015-04-10T08:49:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/3228
url http://hdl.handle.net/10400.6/3228
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136344065179648