Confirmatory composite analysis

Detalhes bibliográficos
Autor(a) principal: Schuberth, Florian
Data de Publicação: 2018
Outros Autores: Henseler, Jörg, Dijkstra, Theo K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.3389/fpsyg.2018.02541
Resumo: Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9(DEC), [02541]. DOI: 10.3389/fpsyg.2018.02541
id RCAP_f7d231aa6b32abee11a198f59f1b6399
oai_identifier_str oai:run.unl.pt:10362/55742
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Confirmatory composite analysisArtifactsComposite modelingDesign researchMonte Carlo simulation studyStructural equation modelingTheory testingPsychology(all)Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9(DEC), [02541]. DOI: 10.3389/fpsyg.2018.02541This article introduces confirmatory composite analysis (CCA) as a structural equation modeling technique that aims at testing composite models. It facilitates the operationalization and assessment of design concepts, so-called artifacts. CCA entails the same steps as confirmatory factor analysis: model specification, model identification, model estimation, and model assessment. Composite models are specified such that they consist of a set of interrelated composites, all of which emerge as linear combinations of observable variables. Researchers must ensure theoretical identification of their specified model. For the estimation of the model, several estimators are available; in particular Kettenring's extensions of canonical correlation analysis provide consistent estimates. Model assessment mainly relies on the Bollen-Stine bootstrap to assess the discrepancy between the empirical and the estimated model-implied indicator covariance matrix. A Monte Carlo simulation examines the efficacy of CCA, and demonstrates that CCA is able to detect various forms of model misspecification.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNSchuberth, FlorianHenseler, JörgDijkstra, Theo K.2018-12-26T23:16:46Z2018-12-132018-12-13T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.3389/fpsyg.2018.02541eng1664-1078PURE: 10973174http://www.scopus.com/inward/record.url?scp=85058418956&partnerID=8YFLogxKhttps://doi.org/10.3389/fpsyg.2018.02541info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:36:10Zoai:run.unl.pt:10362/55742Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:36:10Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Confirmatory composite analysis
title Confirmatory composite analysis
spellingShingle Confirmatory composite analysis
Schuberth, Florian
Artifacts
Composite modeling
Design research
Monte Carlo simulation study
Structural equation modeling
Theory testing
Psychology(all)
title_short Confirmatory composite analysis
title_full Confirmatory composite analysis
title_fullStr Confirmatory composite analysis
title_full_unstemmed Confirmatory composite analysis
title_sort Confirmatory composite analysis
author Schuberth, Florian
author_facet Schuberth, Florian
Henseler, Jörg
Dijkstra, Theo K.
author_role author
author2 Henseler, Jörg
Dijkstra, Theo K.
author2_role author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Schuberth, Florian
Henseler, Jörg
Dijkstra, Theo K.
dc.subject.por.fl_str_mv Artifacts
Composite modeling
Design research
Monte Carlo simulation study
Structural equation modeling
Theory testing
Psychology(all)
topic Artifacts
Composite modeling
Design research
Monte Carlo simulation study
Structural equation modeling
Theory testing
Psychology(all)
description Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Confirmatory composite analysis. Frontiers in Psychology, 9(DEC), [02541]. DOI: 10.3389/fpsyg.2018.02541
publishDate 2018
dc.date.none.fl_str_mv 2018-12-26T23:16:46Z
2018-12-13
2018-12-13T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.3389/fpsyg.2018.02541
url https://doi.org/10.3389/fpsyg.2018.02541
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1664-1078
PURE: 10973174
http://www.scopus.com/inward/record.url?scp=85058418956&partnerID=8YFLogxK
https://doi.org/10.3389/fpsyg.2018.02541
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545666197454848