Collaborative swarm intelligence to estimate PV parameters

Detalhes bibliográficos
Autor(a) principal: Nunes, H.G.G.
Data de Publicação: 2019
Outros Autores: Pombo, José Álvaro Nunes, Bento, P.M.R., Mariano, S., Calado, M. Do Rosário
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/7051
Resumo: To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other wellestablished MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.
id RCAP_f82a087e741d6e9ff29fba4f68e6eee6
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/7051
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Collaborative swarm intelligence to estimate PV parametersCollaborative swarm intelligenceHybrid metaheuristicParameter estimationSingle-diode modelDouble-diode modelTo properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other wellestablished MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.uBibliorumNunes, H.G.G.Pombo, José Álvaro NunesBento, P.M.R.Mariano, S.Calado, M. Do Rosário2019-04-29T16:30:26Z2019-032019-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7051eng10.1016/j.enconman.2019.02.003metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:46:06Zoai:ubibliorum.ubi.pt:10400.6/7051Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:39.178171Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Collaborative swarm intelligence to estimate PV parameters
title Collaborative swarm intelligence to estimate PV parameters
spellingShingle Collaborative swarm intelligence to estimate PV parameters
Nunes, H.G.G.
Collaborative swarm intelligence
Hybrid metaheuristic
Parameter estimation
Single-diode model
Double-diode model
title_short Collaborative swarm intelligence to estimate PV parameters
title_full Collaborative swarm intelligence to estimate PV parameters
title_fullStr Collaborative swarm intelligence to estimate PV parameters
title_full_unstemmed Collaborative swarm intelligence to estimate PV parameters
title_sort Collaborative swarm intelligence to estimate PV parameters
author Nunes, H.G.G.
author_facet Nunes, H.G.G.
Pombo, José Álvaro Nunes
Bento, P.M.R.
Mariano, S.
Calado, M. Do Rosário
author_role author
author2 Pombo, José Álvaro Nunes
Bento, P.M.R.
Mariano, S.
Calado, M. Do Rosário
author2_role author
author
author
author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Nunes, H.G.G.
Pombo, José Álvaro Nunes
Bento, P.M.R.
Mariano, S.
Calado, M. Do Rosário
dc.subject.por.fl_str_mv Collaborative swarm intelligence
Hybrid metaheuristic
Parameter estimation
Single-diode model
Double-diode model
topic Collaborative swarm intelligence
Hybrid metaheuristic
Parameter estimation
Single-diode model
Double-diode model
description To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other wellestablished MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.
publishDate 2019
dc.date.none.fl_str_mv 2019-04-29T16:30:26Z
2019-03
2019-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/7051
url http://hdl.handle.net/10400.6/7051
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.enconman.2019.02.003
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136371975127040