On Goodness-of-Fit Tests for the Neyman Type A Distribution

Detalhes bibliográficos
Autor(a) principal: Batsidis, Apostolos
Data de Publicação: 2023
Outros Autores: J. Lemonte , Artur
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.57805/revstat.v21i2.407
Resumo: The two-parameter Neyman type A distribution is quite useful for modeling count data, since it corresponds to a simple, flexible and overdispersed discrete distribution, which is also zero[1]inflated. In this paper, we show that the probability generating function of the Neyman type A distribution is the only probability generating function which satisfies a certain differential equation. Based on an empirical counterpart of this specific differential equation, we propose and study a new goodness-of-fit test for this distribution. The test is consistent against fixed alternative hypotheses, while its null distribution can be consistently approximated by using parametric bootstrap. We investigate the finite sample performance of the proposed test numerically by means of Monte Carlo experiments, and comparisons with other existing goodness-of-fit tests are also considered. Empirical applications to real data are considered for illustrative purposes.
id RCAP_f82fe944499474bb0587a5042613fdb9
oai_identifier_str oai:revstat:article/407
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On Goodness-of-Fit Tests for the Neyman Type A Distributionempirical probability generating functionparametric bootstrapprobability generating functionBell-Touchard distributioncount dataThe two-parameter Neyman type A distribution is quite useful for modeling count data, since it corresponds to a simple, flexible and overdispersed discrete distribution, which is also zero[1]inflated. In this paper, we show that the probability generating function of the Neyman type A distribution is the only probability generating function which satisfies a certain differential equation. Based on an empirical counterpart of this specific differential equation, we propose and study a new goodness-of-fit test for this distribution. The test is consistent against fixed alternative hypotheses, while its null distribution can be consistently approximated by using parametric bootstrap. We investigate the finite sample performance of the proposed test numerically by means of Monte Carlo experiments, and comparisons with other existing goodness-of-fit tests are also considered. Empirical applications to real data are considered for illustrative purposes.Statistics Portugal2023-06-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v21i2.407https://doi.org/10.57805/revstat.v21i2.407REVSTAT-Statistical Journal; Vol. 21 No. 2 (2023): REVSTAT-Statistical Journal; 143–171REVSTAT; Vol. 21 N.º 2 (2023): REVSTAT-Statistical Journal; 143–1712183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/407https://revstat.ine.pt/index.php/REVSTAT/article/view/407/637Copyright (c) 2021 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessBatsidis, ApostolosJ. Lemonte , Artur2023-07-01T06:30:14Zoai:revstat:article/407Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:02:13.602257Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On Goodness-of-Fit Tests for the Neyman Type A Distribution
title On Goodness-of-Fit Tests for the Neyman Type A Distribution
spellingShingle On Goodness-of-Fit Tests for the Neyman Type A Distribution
Batsidis, Apostolos
empirical probability generating function
parametric bootstrap
probability generating function
Bell-Touchard distribution
count data
title_short On Goodness-of-Fit Tests for the Neyman Type A Distribution
title_full On Goodness-of-Fit Tests for the Neyman Type A Distribution
title_fullStr On Goodness-of-Fit Tests for the Neyman Type A Distribution
title_full_unstemmed On Goodness-of-Fit Tests for the Neyman Type A Distribution
title_sort On Goodness-of-Fit Tests for the Neyman Type A Distribution
author Batsidis, Apostolos
author_facet Batsidis, Apostolos
J. Lemonte , Artur
author_role author
author2 J. Lemonte , Artur
author2_role author
dc.contributor.author.fl_str_mv Batsidis, Apostolos
J. Lemonte , Artur
dc.subject.por.fl_str_mv empirical probability generating function
parametric bootstrap
probability generating function
Bell-Touchard distribution
count data
topic empirical probability generating function
parametric bootstrap
probability generating function
Bell-Touchard distribution
count data
description The two-parameter Neyman type A distribution is quite useful for modeling count data, since it corresponds to a simple, flexible and overdispersed discrete distribution, which is also zero[1]inflated. In this paper, we show that the probability generating function of the Neyman type A distribution is the only probability generating function which satisfies a certain differential equation. Based on an empirical counterpart of this specific differential equation, we propose and study a new goodness-of-fit test for this distribution. The test is consistent against fixed alternative hypotheses, while its null distribution can be consistently approximated by using parametric bootstrap. We investigate the finite sample performance of the proposed test numerically by means of Monte Carlo experiments, and comparisons with other existing goodness-of-fit tests are also considered. Empirical applications to real data are considered for illustrative purposes.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.57805/revstat.v21i2.407
https://doi.org/10.57805/revstat.v21i2.407
url https://doi.org/10.57805/revstat.v21i2.407
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revstat.ine.pt/index.php/REVSTAT/article/view/407
https://revstat.ine.pt/index.php/REVSTAT/article/view/407/637
dc.rights.driver.fl_str_mv Copyright (c) 2021 REVSTAT-Statistical Journal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 REVSTAT-Statistical Journal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Statistics Portugal
publisher.none.fl_str_mv Statistics Portugal
dc.source.none.fl_str_mv REVSTAT-Statistical Journal; Vol. 21 No. 2 (2023): REVSTAT-Statistical Journal; 143–171
REVSTAT; Vol. 21 N.º 2 (2023): REVSTAT-Statistical Journal; 143–171
2183-0371
1645-6726
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131688430731264