On Goodness-of-Fit Tests for the Neyman Type A Distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.57805/revstat.v21i2.407 |
Resumo: | The two-parameter Neyman type A distribution is quite useful for modeling count data, since it corresponds to a simple, flexible and overdispersed discrete distribution, which is also zero[1]inflated. In this paper, we show that the probability generating function of the Neyman type A distribution is the only probability generating function which satisfies a certain differential equation. Based on an empirical counterpart of this specific differential equation, we propose and study a new goodness-of-fit test for this distribution. The test is consistent against fixed alternative hypotheses, while its null distribution can be consistently approximated by using parametric bootstrap. We investigate the finite sample performance of the proposed test numerically by means of Monte Carlo experiments, and comparisons with other existing goodness-of-fit tests are also considered. Empirical applications to real data are considered for illustrative purposes. |
id |
RCAP_f82fe944499474bb0587a5042613fdb9 |
---|---|
oai_identifier_str |
oai:revstat:article/407 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On Goodness-of-Fit Tests for the Neyman Type A Distributionempirical probability generating functionparametric bootstrapprobability generating functionBell-Touchard distributioncount dataThe two-parameter Neyman type A distribution is quite useful for modeling count data, since it corresponds to a simple, flexible and overdispersed discrete distribution, which is also zero[1]inflated. In this paper, we show that the probability generating function of the Neyman type A distribution is the only probability generating function which satisfies a certain differential equation. Based on an empirical counterpart of this specific differential equation, we propose and study a new goodness-of-fit test for this distribution. The test is consistent against fixed alternative hypotheses, while its null distribution can be consistently approximated by using parametric bootstrap. We investigate the finite sample performance of the proposed test numerically by means of Monte Carlo experiments, and comparisons with other existing goodness-of-fit tests are also considered. Empirical applications to real data are considered for illustrative purposes.Statistics Portugal2023-06-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.57805/revstat.v21i2.407https://doi.org/10.57805/revstat.v21i2.407REVSTAT-Statistical Journal; Vol. 21 No. 2 (2023): REVSTAT-Statistical Journal; 143–171REVSTAT; Vol. 21 N.º 2 (2023): REVSTAT-Statistical Journal; 143–1712183-03711645-6726reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttps://revstat.ine.pt/index.php/REVSTAT/article/view/407https://revstat.ine.pt/index.php/REVSTAT/article/view/407/637Copyright (c) 2021 REVSTAT-Statistical Journalinfo:eu-repo/semantics/openAccessBatsidis, ApostolosJ. Lemonte , Artur2023-07-01T06:30:14Zoai:revstat:article/407Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:02:13.602257Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
title |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
spellingShingle |
On Goodness-of-Fit Tests for the Neyman Type A Distribution Batsidis, Apostolos empirical probability generating function parametric bootstrap probability generating function Bell-Touchard distribution count data |
title_short |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
title_full |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
title_fullStr |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
title_full_unstemmed |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
title_sort |
On Goodness-of-Fit Tests for the Neyman Type A Distribution |
author |
Batsidis, Apostolos |
author_facet |
Batsidis, Apostolos J. Lemonte , Artur |
author_role |
author |
author2 |
J. Lemonte , Artur |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Batsidis, Apostolos J. Lemonte , Artur |
dc.subject.por.fl_str_mv |
empirical probability generating function parametric bootstrap probability generating function Bell-Touchard distribution count data |
topic |
empirical probability generating function parametric bootstrap probability generating function Bell-Touchard distribution count data |
description |
The two-parameter Neyman type A distribution is quite useful for modeling count data, since it corresponds to a simple, flexible and overdispersed discrete distribution, which is also zero[1]inflated. In this paper, we show that the probability generating function of the Neyman type A distribution is the only probability generating function which satisfies a certain differential equation. Based on an empirical counterpart of this specific differential equation, we propose and study a new goodness-of-fit test for this distribution. The test is consistent against fixed alternative hypotheses, while its null distribution can be consistently approximated by using parametric bootstrap. We investigate the finite sample performance of the proposed test numerically by means of Monte Carlo experiments, and comparisons with other existing goodness-of-fit tests are also considered. Empirical applications to real data are considered for illustrative purposes. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.57805/revstat.v21i2.407 https://doi.org/10.57805/revstat.v21i2.407 |
url |
https://doi.org/10.57805/revstat.v21i2.407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revstat.ine.pt/index.php/REVSTAT/article/view/407 https://revstat.ine.pt/index.php/REVSTAT/article/view/407/637 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 REVSTAT-Statistical Journal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 REVSTAT-Statistical Journal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Statistics Portugal |
publisher.none.fl_str_mv |
Statistics Portugal |
dc.source.none.fl_str_mv |
REVSTAT-Statistical Journal; Vol. 21 No. 2 (2023): REVSTAT-Statistical Journal; 143–171 REVSTAT; Vol. 21 N.º 2 (2023): REVSTAT-Statistical Journal; 143–171 2183-0371 1645-6726 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131688430731264 |