Simple transitive 2-representations for some 2-subcategories of Soergel bimodules

Detalhes bibliográficos
Autor(a) principal: Mackaay, Marco
Data de Publicação: 2017
Outros Autores: Mazorchuk, Volodymyr
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.1/13218
Resumo: We classify simple transitive 2-representations of certain 2-subcategories of the 2-category of Soergel bimodules over the coinvariant algebra in Coxeter types B-2 and I-2(5). In the I-2(5) case it turns out that simple transitive 2-representations are exhausted by cell 2-representations. In the B-2 case we show that, apart from cell 2-representations, there is a unique, up to equivalence, additional simple transitive 2-representation and we give an explicit construction of this 2-representation. (C) 2016 Elsevier B.V. All rights reserved.
id RCAP_f83203549e2ede3b11f2aecd9acc2f7a
oai_identifier_str oai:sapientia.ualg.pt:10400.1/13218
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Simple transitive 2-representations for some 2-subcategories of Soergel bimodulesFinitary 2-CategoriesFiat 2-CategoriesEquivalencesWe classify simple transitive 2-representations of certain 2-subcategories of the 2-category of Soergel bimodules over the coinvariant algebra in Coxeter types B-2 and I-2(5). In the I-2(5) case it turns out that simple transitive 2-representations are exhausted by cell 2-representations. In the B-2 case we show that, apart from cell 2-representations, there is a unique, up to equivalence, additional simple transitive 2-representation and we give an explicit construction of this 2-representation. (C) 2016 Elsevier B.V. All rights reserved.Swedish Research CouncilElsevier Science BvSapientiaMackaay, MarcoMazorchuk, Volodymyr2019-11-20T15:07:48Z2017-032017-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/13218eng0022-404910.1016/j.jpaa.2016.07.006info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:25:18Zoai:sapientia.ualg.pt:10400.1/13218Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:04:24.325942Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
title Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
spellingShingle Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
Mackaay, Marco
Finitary 2-Categories
Fiat 2-Categories
Equivalences
title_short Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
title_full Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
title_fullStr Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
title_full_unstemmed Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
title_sort Simple transitive 2-representations for some 2-subcategories of Soergel bimodules
author Mackaay, Marco
author_facet Mackaay, Marco
Mazorchuk, Volodymyr
author_role author
author2 Mazorchuk, Volodymyr
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Mackaay, Marco
Mazorchuk, Volodymyr
dc.subject.por.fl_str_mv Finitary 2-Categories
Fiat 2-Categories
Equivalences
topic Finitary 2-Categories
Fiat 2-Categories
Equivalences
description We classify simple transitive 2-representations of certain 2-subcategories of the 2-category of Soergel bimodules over the coinvariant algebra in Coxeter types B-2 and I-2(5). In the I-2(5) case it turns out that simple transitive 2-representations are exhausted by cell 2-representations. In the B-2 case we show that, apart from cell 2-representations, there is a unique, up to equivalence, additional simple transitive 2-representation and we give an explicit construction of this 2-representation. (C) 2016 Elsevier B.V. All rights reserved.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
2017-03-01T00:00:00Z
2019-11-20T15:07:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/13218
url http://hdl.handle.net/10400.1/13218
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-4049
10.1016/j.jpaa.2016.07.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Bv
publisher.none.fl_str_mv Elsevier Science Bv
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133280948191232