Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration

Detalhes bibliográficos
Autor(a) principal: Oliveira, Beatriz Catarino
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/163643
Resumo: Bone, a remarkable tissue with the ability to naturally regenerate when slightly damaged, faces limitations when submitted to critical injuries that can inhibit its inherent healing process, necessitating external interventions like bone grafts, which present challenges, restricting their clinical application. Thus, biodegradable materials have gained importance to be used for bone replacement alternatives. These materials can be manipulated to obtain porous structures in several forms, promoting cell proliferation and adhesion while supporting the formation of new bone. Magnesium (Mg) emerges as an attractive biomaterial for these scenarios due to its biodegradability, mechanical properties similar to natural bone, and its predominant presence in bones, making it an ideal candidate for bone applications. The primary goal of this studywas to manufacture temporary implants for bone regeneration. Three approaches were studied incorporating Mg to achieve this: i) three-dimensional (3D) Additive Manufactured (AM) scaffolds; ii) hydrogels; and iii) hybrid, through the combination of a scaffold with hydrogel. To produce theAMscaffolds, two weight percentages of Mg, 5 and 15%, were used in two forms, Magnesium Oxide, MgO, and Magnesium Sulphate, MgSO4. The addition of Mg resulted in a rough surface and enhanced mechanical properties, with an optimal Mg content of 5%, presenting the highest resistance to compression. A synthetic polymer, PEGDA, was used as the hydrogel base, and MgSO4 was added. The mechanical properties of the Mg group showed an improvement in the compressive Young’s Modulus (2.28 MPa) and an increase in their ductility. The plateau reached after an intital weight increase proved that these hydrogels do not degrade immediately, being stable enough to help bone regeneration. A third approach was made, combining the two previously mentioned, an AM scaffold with a Mg-hydrogel. Notably, the mechanical properties of this strategy surpassed those of both previous approaches. The results demonstrated that the hybrid approach presents a mechanical behaviour closer to the levels found in natural bone, reaching Compressive Young’s Modulus of about 2 GPa.
id RCAP_f8d5e8f65607b6d494c6350dd62bef96
oai_identifier_str oai:run.unl.pt:10362/163643
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Magnesium-based Biodegradable Scaffolds for Bone Tissue RegenerationBone RegenerationAdditive Manufactured ScaffoldsHydrogelMagnesiumTissue EngineeringDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasBone, a remarkable tissue with the ability to naturally regenerate when slightly damaged, faces limitations when submitted to critical injuries that can inhibit its inherent healing process, necessitating external interventions like bone grafts, which present challenges, restricting their clinical application. Thus, biodegradable materials have gained importance to be used for bone replacement alternatives. These materials can be manipulated to obtain porous structures in several forms, promoting cell proliferation and adhesion while supporting the formation of new bone. Magnesium (Mg) emerges as an attractive biomaterial for these scenarios due to its biodegradability, mechanical properties similar to natural bone, and its predominant presence in bones, making it an ideal candidate for bone applications. The primary goal of this studywas to manufacture temporary implants for bone regeneration. Three approaches were studied incorporating Mg to achieve this: i) three-dimensional (3D) Additive Manufactured (AM) scaffolds; ii) hydrogels; and iii) hybrid, through the combination of a scaffold with hydrogel. To produce theAMscaffolds, two weight percentages of Mg, 5 and 15%, were used in two forms, Magnesium Oxide, MgO, and Magnesium Sulphate, MgSO4. The addition of Mg resulted in a rough surface and enhanced mechanical properties, with an optimal Mg content of 5%, presenting the highest resistance to compression. A synthetic polymer, PEGDA, was used as the hydrogel base, and MgSO4 was added. The mechanical properties of the Mg group showed an improvement in the compressive Young’s Modulus (2.28 MPa) and an increase in their ductility. The plateau reached after an intital weight increase proved that these hydrogels do not degrade immediately, being stable enough to help bone regeneration. A third approach was made, combining the two previously mentioned, an AM scaffold with a Mg-hydrogel. Notably, the mechanical properties of this strategy surpassed those of both previous approaches. The results demonstrated that the hybrid approach presents a mechanical behaviour closer to the levels found in natural bone, reaching Compressive Young’s Modulus of about 2 GPa.O osso é um tecido com capacidade de se regenerar naturalmente quando ligeiramente danificado, mas enfrenta limitações quando sujeito a lesões críticas que podem inibir esta capacidade, tornando-se necessária intervenção externa, como enxertos ósseos, que apresentam alguns desafios. Assim, os materiais biodegradáveis têm ganho importância, podendo ser manipulados por forma a obter estruturas que promovem a proliferação e adesão celulares, enquanto suportam a formação de novo osso. O magnésio (Mg) surge como um biomaterial atrativo para estas situações por ser biodegradável, apresentar propriedades mecânicas semelhantes às do osso natural e ainda pela sua presença predominante nos ossos. O principal objetivo deste estudo foi fabricar implantes temporários para a regeneração óssea. Foram estudadas três abordagens, com a incorporação de Mg, para atingir este objetivo: i) estruturas tridimensionais (3D), scaffolds, produzidas por fabricação aditiva (AM); ii) hidrogéis; e iii) uma abordagem híbrida, através da combinação de um scaffold com um hidrogel. Para produzir os scaffolds, duas percentagens de Mg, 5 e 15%, foram usadas em duas formas diferentes, Óxido de Magnésio, MgO, e Sulfato de Magnésio, MgSO4. A adição de Mg resultou numa superfície mais rugosa e melhorou as propriedades mecânicas, tendo o grupo de 5% Mg sido eleito como ótimo, apresentando a maior resistência à compressão. Umpolímero sintético, PEGDA, foi usado em combinação com MgSO4 para formulação do hidrogel. A adicição de Mg levou a uma melhoria no módulo de compressão (2.28 MPa) e a um aumento da ductilidade. O plateau atingido após o aumento inicial da massa no teste de degradação comprovou que estes não se degradam imediatamente, sendo estáveis para auxiliar no processo de regeneração óssea. Foi ainda realizada uma terceira abordagem, combinando as estruturas anteriores, scaffold e hidrogel de Mg. Notavelmente, as propriedades mecânicas dessa estratégia superaram as das abordagens anteriores, apresentando um comportamento mecânico mais próximo dos níveis encontrados no osso natural, atingindo um módulo de compressão de quase 2 GPa.Moura, CarlaBaptista, AnaRUNOliveira, Beatriz Catarino2024-02-16T11:10:23Z2023-122023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/163643enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:48:02Zoai:run.unl.pt:10362/163643Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:59:47.590252Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
title Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
spellingShingle Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
Oliveira, Beatriz Catarino
Bone Regeneration
Additive Manufactured Scaffolds
Hydrogel
Magnesium
Tissue Engineering
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
title_full Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
title_fullStr Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
title_full_unstemmed Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
title_sort Magnesium-based Biodegradable Scaffolds for Bone Tissue Regeneration
author Oliveira, Beatriz Catarino
author_facet Oliveira, Beatriz Catarino
author_role author
dc.contributor.none.fl_str_mv Moura, Carla
Baptista, Ana
RUN
dc.contributor.author.fl_str_mv Oliveira, Beatriz Catarino
dc.subject.por.fl_str_mv Bone Regeneration
Additive Manufactured Scaffolds
Hydrogel
Magnesium
Tissue Engineering
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Bone Regeneration
Additive Manufactured Scaffolds
Hydrogel
Magnesium
Tissue Engineering
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Bone, a remarkable tissue with the ability to naturally regenerate when slightly damaged, faces limitations when submitted to critical injuries that can inhibit its inherent healing process, necessitating external interventions like bone grafts, which present challenges, restricting their clinical application. Thus, biodegradable materials have gained importance to be used for bone replacement alternatives. These materials can be manipulated to obtain porous structures in several forms, promoting cell proliferation and adhesion while supporting the formation of new bone. Magnesium (Mg) emerges as an attractive biomaterial for these scenarios due to its biodegradability, mechanical properties similar to natural bone, and its predominant presence in bones, making it an ideal candidate for bone applications. The primary goal of this studywas to manufacture temporary implants for bone regeneration. Three approaches were studied incorporating Mg to achieve this: i) three-dimensional (3D) Additive Manufactured (AM) scaffolds; ii) hydrogels; and iii) hybrid, through the combination of a scaffold with hydrogel. To produce theAMscaffolds, two weight percentages of Mg, 5 and 15%, were used in two forms, Magnesium Oxide, MgO, and Magnesium Sulphate, MgSO4. The addition of Mg resulted in a rough surface and enhanced mechanical properties, with an optimal Mg content of 5%, presenting the highest resistance to compression. A synthetic polymer, PEGDA, was used as the hydrogel base, and MgSO4 was added. The mechanical properties of the Mg group showed an improvement in the compressive Young’s Modulus (2.28 MPa) and an increase in their ductility. The plateau reached after an intital weight increase proved that these hydrogels do not degrade immediately, being stable enough to help bone regeneration. A third approach was made, combining the two previously mentioned, an AM scaffold with a Mg-hydrogel. Notably, the mechanical properties of this strategy surpassed those of both previous approaches. The results demonstrated that the hybrid approach presents a mechanical behaviour closer to the levels found in natural bone, reaching Compressive Young’s Modulus of about 2 GPa.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
2023-12-01T00:00:00Z
2024-02-16T11:10:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/163643
url http://hdl.handle.net/10362/163643
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138174444765184