Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”

Detalhes bibliográficos
Autor(a) principal: Cidade de Moura, Ivone
Data de Publicação: 2023
Outros Autores: Mesquita, Luís, Teresa Ribeiro, Ricardo
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.46885/roentgen.v4i2.114
Resumo: The growing demand for radiological exams puts pressure on imaging services that face challenges due to the shortage of radiologists, requiring faster interpretation with a higher potential for error. In parallel, radiomics and artificial intelligence (AI) techniques have proven to be important tools in the field of radiology, revolutionizing clinical practice itself. Using these techniques, this paper developed a pathology detection classifier for chest radiographs, from the public database CestXray14, in order to highlight the crucial role that understanding radiomics techniques and AI play in the radiographer's profession.  We analysed 1662 chest radiographs (50% with pathology) and applied two strategies for selecting 5 radiomics features: (i) principal component analysis and (ii) information gain ratio, using the Orange software. With the PCA method, with reduction to 5 components and 73% of variance explained, the best classifier was the Neural Network, with 0.987 of Area Under the Curve (AUC). In Information Gain Ratio also the Neural Network was the best classifier with 0.972 AUC, in which a sensitivity of 97.8%, specificity of 92.9% and accuracy of 93% were found.  By using AI techniques and taking advantage of a large dataset, our study demonstrates the feasibility of using automatic classifiers to aid in the interpretation of chest radiographs, indicating their potential as a valuable tool in screening, prioritizing exams, and optimizing workflow in radiology departments. 
id RCAP_f8fa4a6710ff7449892d086f997b7fa6
oai_identifier_str oai:roentgen.pt:article/114
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”Algoritmo de Aprendizagem Automática na Classificação de Radiografia ao Tórax em Incidência frontal como “normais” ou “patológicos”artificial intelligencecomputer-aided detectionmachine learning classifierschest x-rayprincipal component analysisrankinteligência artificialcomputer-aided detectionclassificadores de aprendizagem automáticaradiografia tóraxprincipal component analysisrankThe growing demand for radiological exams puts pressure on imaging services that face challenges due to the shortage of radiologists, requiring faster interpretation with a higher potential for error. In parallel, radiomics and artificial intelligence (AI) techniques have proven to be important tools in the field of radiology, revolutionizing clinical practice itself. Using these techniques, this paper developed a pathology detection classifier for chest radiographs, from the public database CestXray14, in order to highlight the crucial role that understanding radiomics techniques and AI play in the radiographer's profession.  We analysed 1662 chest radiographs (50% with pathology) and applied two strategies for selecting 5 radiomics features: (i) principal component analysis and (ii) information gain ratio, using the Orange software. With the PCA method, with reduction to 5 components and 73% of variance explained, the best classifier was the Neural Network, with 0.987 of Area Under the Curve (AUC). In Information Gain Ratio also the Neural Network was the best classifier with 0.972 AUC, in which a sensitivity of 97.8%, specificity of 92.9% and accuracy of 93% were found.  By using AI techniques and taking advantage of a large dataset, our study demonstrates the feasibility of using automatic classifiers to aid in the interpretation of chest radiographs, indicating their potential as a valuable tool in screening, prioritizing exams, and optimizing workflow in radiology departments. A crescente procura de exames radiológicos pressiona os serviços de imagiologia que enfrentam desafios devido à escassez de radiologistas, exigindo uma interpretação mais rápida com um maior potencial de erro. Em paralelo, as técnicas de radiomics e inteligência artificial (IA) têm-se verificado ferramentas importantes no campo da radiologia, revolucionando a própria prática clínica. Através destas técnicas, este artigo desenvolveu um classificador de deteção de patologia para radiografias do tórax, da base-de dados pública ChestXray14, com o objetivo de realçar o papel crucial que a compreensão das técnicas de radiomics e IA na profissão do técnico de radiologista.  Foram analisadas 1662 radiografias (50% com patologia) ao tórax, tendo sido aplicadas duas estratégias para seleção de 5 características radiomics: (i) análise de componentes principais (PCA) e (ii) “information gain ratio” (Rank), utilizando o software Orange. Com o método PCA, com redução para 5 componentes e 73% de variância explicada, o melhor classificador foi o Neural Network, com 0,987 de Area Under the Curve (AUC). No Information Gain Ratio também o Neural Network foi o melhor classificador com 0,972 AUC, na qual se verificou uma sensibilidade de 97,8%, especificidade de 92,9% e precisão de 93%.   Ao utilizar técnicas de IA e tirar partido de um grande conjunto de dados, o nosso estudo demonstra a viabilidade da utilização de classificadores automáticos para ajudar na interpretação de radiografias ao tórax, indicando o seu potencial como uma ferramenta valiosa na triagem, priorização de exames, e otimização no fluxo de trabalho nos departamentos de radiologia.  NUCLIRAD - Núcleo de Desenvolvimento dos Técnicos de Radiologia2023-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.46885/roentgen.v4i2.114https://doi.org/10.46885/roentgen.v4i2.114ROENTGEN-Scientific Journal of Radiological Techniques; Vol. 4 No. 2 (2023): Innovations impacting Radiology; 25-37ROENTGEN-Revista Científica das Técnicas Radiológicas; v. 4 n. 2 (2023): Inovações com impacto na Radiologia; 25-372184-7657reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://roentgen.pt/index.php/Principal/article/view/114https://roentgen.pt/index.php/Principal/article/view/114/87Direitos de Autor (c) 2023 ROENTGEN-Revista Científica das Técnicas Radiológicasinfo:eu-repo/semantics/openAccessCidade de Moura, IvoneMesquita, LuísTeresa Ribeiro, Ricardo2023-12-20T16:17:15Zoai:roentgen.pt:article/114Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:21.919761Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
Algoritmo de Aprendizagem Automática na Classificação de Radiografia ao Tórax em Incidência frontal como “normais” ou “patológicos”
title Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
spellingShingle Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
Cidade de Moura, Ivone
artificial intelligence
computer-aided detection
machine learning classifiers
chest x-ray
principal component analysis
rank
inteligência artificial
computer-aided detection
classificadores de aprendizagem automática
radiografia tórax
principal component analysis
rank
title_short Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
title_full Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
title_fullStr Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
title_full_unstemmed Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
title_sort Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
author Cidade de Moura, Ivone
author_facet Cidade de Moura, Ivone
Mesquita, Luís
Teresa Ribeiro, Ricardo
author_role author
author2 Mesquita, Luís
Teresa Ribeiro, Ricardo
author2_role author
author
dc.contributor.author.fl_str_mv Cidade de Moura, Ivone
Mesquita, Luís
Teresa Ribeiro, Ricardo
dc.subject.por.fl_str_mv artificial intelligence
computer-aided detection
machine learning classifiers
chest x-ray
principal component analysis
rank
inteligência artificial
computer-aided detection
classificadores de aprendizagem automática
radiografia tórax
principal component analysis
rank
topic artificial intelligence
computer-aided detection
machine learning classifiers
chest x-ray
principal component analysis
rank
inteligência artificial
computer-aided detection
classificadores de aprendizagem automática
radiografia tórax
principal component analysis
rank
description The growing demand for radiological exams puts pressure on imaging services that face challenges due to the shortage of radiologists, requiring faster interpretation with a higher potential for error. In parallel, radiomics and artificial intelligence (AI) techniques have proven to be important tools in the field of radiology, revolutionizing clinical practice itself. Using these techniques, this paper developed a pathology detection classifier for chest radiographs, from the public database CestXray14, in order to highlight the crucial role that understanding radiomics techniques and AI play in the radiographer's profession.  We analysed 1662 chest radiographs (50% with pathology) and applied two strategies for selecting 5 radiomics features: (i) principal component analysis and (ii) information gain ratio, using the Orange software. With the PCA method, with reduction to 5 components and 73% of variance explained, the best classifier was the Neural Network, with 0.987 of Area Under the Curve (AUC). In Information Gain Ratio also the Neural Network was the best classifier with 0.972 AUC, in which a sensitivity of 97.8%, specificity of 92.9% and accuracy of 93% were found.  By using AI techniques and taking advantage of a large dataset, our study demonstrates the feasibility of using automatic classifiers to aid in the interpretation of chest radiographs, indicating their potential as a valuable tool in screening, prioritizing exams, and optimizing workflow in radiology departments. 
publishDate 2023
dc.date.none.fl_str_mv 2023-07-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.46885/roentgen.v4i2.114
https://doi.org/10.46885/roentgen.v4i2.114
url https://doi.org/10.46885/roentgen.v4i2.114
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://roentgen.pt/index.php/Principal/article/view/114
https://roentgen.pt/index.php/Principal/article/view/114/87
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2023 ROENTGEN-Revista Científica das Técnicas Radiológicas
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2023 ROENTGEN-Revista Científica das Técnicas Radiológicas
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv NUCLIRAD - Núcleo de Desenvolvimento dos Técnicos de Radiologia
publisher.none.fl_str_mv NUCLIRAD - Núcleo de Desenvolvimento dos Técnicos de Radiologia
dc.source.none.fl_str_mv ROENTGEN-Scientific Journal of Radiological Techniques; Vol. 4 No. 2 (2023): Innovations impacting Radiology; 25-37
ROENTGEN-Revista Científica das Técnicas Radiológicas; v. 4 n. 2 (2023): Inovações com impacto na Radiologia; 25-37
2184-7657
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136440025612288