Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.46885/roentgen.v4i2.114 |
Resumo: | The growing demand for radiological exams puts pressure on imaging services that face challenges due to the shortage of radiologists, requiring faster interpretation with a higher potential for error. In parallel, radiomics and artificial intelligence (AI) techniques have proven to be important tools in the field of radiology, revolutionizing clinical practice itself. Using these techniques, this paper developed a pathology detection classifier for chest radiographs, from the public database CestXray14, in order to highlight the crucial role that understanding radiomics techniques and AI play in the radiographer's profession. We analysed 1662 chest radiographs (50% with pathology) and applied two strategies for selecting 5 radiomics features: (i) principal component analysis and (ii) information gain ratio, using the Orange software. With the PCA method, with reduction to 5 components and 73% of variance explained, the best classifier was the Neural Network, with 0.987 of Area Under the Curve (AUC). In Information Gain Ratio also the Neural Network was the best classifier with 0.972 AUC, in which a sensitivity of 97.8%, specificity of 92.9% and accuracy of 93% were found. By using AI techniques and taking advantage of a large dataset, our study demonstrates the feasibility of using automatic classifiers to aid in the interpretation of chest radiographs, indicating their potential as a valuable tool in screening, prioritizing exams, and optimizing workflow in radiology departments. |
id |
RCAP_f8fa4a6710ff7449892d086f997b7fa6 |
---|---|
oai_identifier_str |
oai:roentgen.pt:article/114 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological”Algoritmo de Aprendizagem Automática na Classificação de Radiografia ao Tórax em Incidência frontal como “normais” ou “patológicos”artificial intelligencecomputer-aided detectionmachine learning classifierschest x-rayprincipal component analysisrankinteligência artificialcomputer-aided detectionclassificadores de aprendizagem automáticaradiografia tóraxprincipal component analysisrankThe growing demand for radiological exams puts pressure on imaging services that face challenges due to the shortage of radiologists, requiring faster interpretation with a higher potential for error. In parallel, radiomics and artificial intelligence (AI) techniques have proven to be important tools in the field of radiology, revolutionizing clinical practice itself. Using these techniques, this paper developed a pathology detection classifier for chest radiographs, from the public database CestXray14, in order to highlight the crucial role that understanding radiomics techniques and AI play in the radiographer's profession. We analysed 1662 chest radiographs (50% with pathology) and applied two strategies for selecting 5 radiomics features: (i) principal component analysis and (ii) information gain ratio, using the Orange software. With the PCA method, with reduction to 5 components and 73% of variance explained, the best classifier was the Neural Network, with 0.987 of Area Under the Curve (AUC). In Information Gain Ratio also the Neural Network was the best classifier with 0.972 AUC, in which a sensitivity of 97.8%, specificity of 92.9% and accuracy of 93% were found. By using AI techniques and taking advantage of a large dataset, our study demonstrates the feasibility of using automatic classifiers to aid in the interpretation of chest radiographs, indicating their potential as a valuable tool in screening, prioritizing exams, and optimizing workflow in radiology departments. A crescente procura de exames radiológicos pressiona os serviços de imagiologia que enfrentam desafios devido à escassez de radiologistas, exigindo uma interpretação mais rápida com um maior potencial de erro. Em paralelo, as técnicas de radiomics e inteligência artificial (IA) têm-se verificado ferramentas importantes no campo da radiologia, revolucionando a própria prática clínica. Através destas técnicas, este artigo desenvolveu um classificador de deteção de patologia para radiografias do tórax, da base-de dados pública ChestXray14, com o objetivo de realçar o papel crucial que a compreensão das técnicas de radiomics e IA na profissão do técnico de radiologista. Foram analisadas 1662 radiografias (50% com patologia) ao tórax, tendo sido aplicadas duas estratégias para seleção de 5 características radiomics: (i) análise de componentes principais (PCA) e (ii) “information gain ratio” (Rank), utilizando o software Orange. Com o método PCA, com redução para 5 componentes e 73% de variância explicada, o melhor classificador foi o Neural Network, com 0,987 de Area Under the Curve (AUC). No Information Gain Ratio também o Neural Network foi o melhor classificador com 0,972 AUC, na qual se verificou uma sensibilidade de 97,8%, especificidade de 92,9% e precisão de 93%. Ao utilizar técnicas de IA e tirar partido de um grande conjunto de dados, o nosso estudo demonstra a viabilidade da utilização de classificadores automáticos para ajudar na interpretação de radiografias ao tórax, indicando o seu potencial como uma ferramenta valiosa na triagem, priorização de exames, e otimização no fluxo de trabalho nos departamentos de radiologia. NUCLIRAD - Núcleo de Desenvolvimento dos Técnicos de Radiologia2023-07-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.46885/roentgen.v4i2.114https://doi.org/10.46885/roentgen.v4i2.114ROENTGEN-Scientific Journal of Radiological Techniques; Vol. 4 No. 2 (2023): Innovations impacting Radiology; 25-37ROENTGEN-Revista Científica das Técnicas Radiológicas; v. 4 n. 2 (2023): Inovações com impacto na Radiologia; 25-372184-7657reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPporhttps://roentgen.pt/index.php/Principal/article/view/114https://roentgen.pt/index.php/Principal/article/view/114/87Direitos de Autor (c) 2023 ROENTGEN-Revista Científica das Técnicas Radiológicasinfo:eu-repo/semantics/openAccessCidade de Moura, IvoneMesquita, LuísTeresa Ribeiro, Ricardo2023-12-20T16:17:15Zoai:roentgen.pt:article/114Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:21.919761Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” Algoritmo de Aprendizagem Automática na Classificação de Radiografia ao Tórax em Incidência frontal como “normais” ou “patológicos” |
title |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” |
spellingShingle |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” Cidade de Moura, Ivone artificial intelligence computer-aided detection machine learning classifiers chest x-ray principal component analysis rank inteligência artificial computer-aided detection classificadores de aprendizagem automática radiografia tórax principal component analysis rank |
title_short |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” |
title_full |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” |
title_fullStr |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” |
title_full_unstemmed |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” |
title_sort |
Machine Learning Algorithm in the Classification of frontal view Chest x-ray as “normal” or “pathological” |
author |
Cidade de Moura, Ivone |
author_facet |
Cidade de Moura, Ivone Mesquita, Luís Teresa Ribeiro, Ricardo |
author_role |
author |
author2 |
Mesquita, Luís Teresa Ribeiro, Ricardo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cidade de Moura, Ivone Mesquita, Luís Teresa Ribeiro, Ricardo |
dc.subject.por.fl_str_mv |
artificial intelligence computer-aided detection machine learning classifiers chest x-ray principal component analysis rank inteligência artificial computer-aided detection classificadores de aprendizagem automática radiografia tórax principal component analysis rank |
topic |
artificial intelligence computer-aided detection machine learning classifiers chest x-ray principal component analysis rank inteligência artificial computer-aided detection classificadores de aprendizagem automática radiografia tórax principal component analysis rank |
description |
The growing demand for radiological exams puts pressure on imaging services that face challenges due to the shortage of radiologists, requiring faster interpretation with a higher potential for error. In parallel, radiomics and artificial intelligence (AI) techniques have proven to be important tools in the field of radiology, revolutionizing clinical practice itself. Using these techniques, this paper developed a pathology detection classifier for chest radiographs, from the public database CestXray14, in order to highlight the crucial role that understanding radiomics techniques and AI play in the radiographer's profession. We analysed 1662 chest radiographs (50% with pathology) and applied two strategies for selecting 5 radiomics features: (i) principal component analysis and (ii) information gain ratio, using the Orange software. With the PCA method, with reduction to 5 components and 73% of variance explained, the best classifier was the Neural Network, with 0.987 of Area Under the Curve (AUC). In Information Gain Ratio also the Neural Network was the best classifier with 0.972 AUC, in which a sensitivity of 97.8%, specificity of 92.9% and accuracy of 93% were found. By using AI techniques and taking advantage of a large dataset, our study demonstrates the feasibility of using automatic classifiers to aid in the interpretation of chest radiographs, indicating their potential as a valuable tool in screening, prioritizing exams, and optimizing workflow in radiology departments. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.46885/roentgen.v4i2.114 https://doi.org/10.46885/roentgen.v4i2.114 |
url |
https://doi.org/10.46885/roentgen.v4i2.114 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://roentgen.pt/index.php/Principal/article/view/114 https://roentgen.pt/index.php/Principal/article/view/114/87 |
dc.rights.driver.fl_str_mv |
Direitos de Autor (c) 2023 ROENTGEN-Revista Científica das Técnicas Radiológicas info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos de Autor (c) 2023 ROENTGEN-Revista Científica das Técnicas Radiológicas |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
NUCLIRAD - Núcleo de Desenvolvimento dos Técnicos de Radiologia |
publisher.none.fl_str_mv |
NUCLIRAD - Núcleo de Desenvolvimento dos Técnicos de Radiologia |
dc.source.none.fl_str_mv |
ROENTGEN-Scientific Journal of Radiological Techniques; Vol. 4 No. 2 (2023): Innovations impacting Radiology; 25-37 ROENTGEN-Revista Científica das Técnicas Radiológicas; v. 4 n. 2 (2023): Inovações com impacto na Radiologia; 25-37 2184-7657 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136440025612288 |