Missing data imputation techniques for wireless continuous vital signs monitoring

Detalhes bibliográficos
Autor(a) principal: van Rossum, Mathilde C.
Data de Publicação: 2023
Outros Autores: da Silva, Pedro M. Alves, Wang, Ying, Kouwenhoven, Ewout A., Hermens, Hermie J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/158434
Resumo: Publisher Copyright: © 2023, The Author(s). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
id RCAP_f9120d09cac922b8433b7ba5a3a62955
oai_identifier_str oai:run.unl.pt:10362/158434
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Missing data imputation techniques for wireless continuous vital signs monitoringImputationMissing dataPhysiological monitoringTelemonitoringVital signsHealth InformaticsCritical Care and Intensive Care MedicineAnesthesiology and Pain MedicinePublisher Copyright: © 2023, The Author(s). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Wireless vital signs sensors are increasingly used for remote patient monitoring, but data analysis is often challenged by missing data periods. This study explored the performance of various imputation techniques for continuous vital signs measurements. Wireless vital signs measurements (heart rate, respiratory rate, blood oxygen saturation, axillary temperature) from surgical ward patients were used for repeated random simulation of missing data periods (gaps) of 5–60 min in two-hour windows. Gaps were imputed using linear interpolation, spline interpolation, last observation- and mean carried forwards technique, and cluster-based prognosis. Imputation performance was evaluated using the mean absolute error (MAE) between original and imputed gap samples. Besides, effects on signal features (window’s slope, mean) and early warning scores (EWS) were explored. Gaps were simulated in 1743 data windows, obtained from 52 patients. Although MAE ranges overlapped, median MAE was structurally lowest for linear interpolation (heart rate: 0.9–2.6 beats/min, respiratory rate: 0.8–1.8 breaths/min, temperature: 0.04–0.17 °C, oxygen saturation: 0.3–0.7% for 5–60 min gaps) but up to twice as high for other techniques. Three techniques resulted in larger ranges of signal feature bias compared to no imputation. Imputation led to EWS misclassification in 1–8% of all simulations. Imputation error ranges vary between imputation techniques and increase with gap length. Imputation may result in larger signal feature bias compared to performing no imputation, and can affect patient risk assessment as illustrated by the EWS. Accordingly, careful implementation and selection of imputation techniques is warranted.DF – Departamento de FísicaRUNvan Rossum, Mathilde C.da Silva, Pedro M. AlvesWang, YingKouwenhoven, Ewout A.Hermens, Hermie J.2023-09-28T22:20:41Z2023-102023-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/158434eng1387-1307PURE: 72616959https://doi.org/10.1007/s10877-023-00975-winfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:40:49Zoai:run.unl.pt:10362/158434Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:08.288624Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Missing data imputation techniques for wireless continuous vital signs monitoring
title Missing data imputation techniques for wireless continuous vital signs monitoring
spellingShingle Missing data imputation techniques for wireless continuous vital signs monitoring
van Rossum, Mathilde C.
Imputation
Missing data
Physiological monitoring
Telemonitoring
Vital signs
Health Informatics
Critical Care and Intensive Care Medicine
Anesthesiology and Pain Medicine
title_short Missing data imputation techniques for wireless continuous vital signs monitoring
title_full Missing data imputation techniques for wireless continuous vital signs monitoring
title_fullStr Missing data imputation techniques for wireless continuous vital signs monitoring
title_full_unstemmed Missing data imputation techniques for wireless continuous vital signs monitoring
title_sort Missing data imputation techniques for wireless continuous vital signs monitoring
author van Rossum, Mathilde C.
author_facet van Rossum, Mathilde C.
da Silva, Pedro M. Alves
Wang, Ying
Kouwenhoven, Ewout A.
Hermens, Hermie J.
author_role author
author2 da Silva, Pedro M. Alves
Wang, Ying
Kouwenhoven, Ewout A.
Hermens, Hermie J.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv DF – Departamento de Física
RUN
dc.contributor.author.fl_str_mv van Rossum, Mathilde C.
da Silva, Pedro M. Alves
Wang, Ying
Kouwenhoven, Ewout A.
Hermens, Hermie J.
dc.subject.por.fl_str_mv Imputation
Missing data
Physiological monitoring
Telemonitoring
Vital signs
Health Informatics
Critical Care and Intensive Care Medicine
Anesthesiology and Pain Medicine
topic Imputation
Missing data
Physiological monitoring
Telemonitoring
Vital signs
Health Informatics
Critical Care and Intensive Care Medicine
Anesthesiology and Pain Medicine
description Publisher Copyright: © 2023, The Author(s). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-28T22:20:41Z
2023-10
2023-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/158434
url http://hdl.handle.net/10362/158434
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1387-1307
PURE: 72616959
https://doi.org/10.1007/s10877-023-00975-w
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 14
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138154524966912