Hot-spot Identification: a Categorical Binary Model Approach

Detalhes bibliográficos
Autor(a) principal: Sara Ferreira
Data de Publicação: 2013
Outros Autores: António Fidalgo Couto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/72361
Resumo: This paper presents an alternative methodology for hot-spot identification based on a probabilistic model. In this methodology, the ranking criterion for hot-spot identification conveys the probability of a site being a hot-spot or a non-hot spot. A binary choice model was used to link the outcome to a set of factors that characterize the risk of the sites under analysis based on our use of two categories (0/1) for the dependent variable. The proposed methodology consists of two main steps. First, a threshold value for the number of accidents is set to distinguish hot spots from safe sites (category 1 or 0, respectively). Based on this classification, a binary model is applied that allows the construction of an ordered site list using the probability of a site being a hot-spot. The second step involves the choice of a selection strategy. The selection strategy can target a fixed number of sites with the greatest probability or, alternatively, all sites exceeding a specific probability, such as 0.5. A demonstration of the proposed methodology is provided using simulated data. For the simulation design, urban intersection data from Porto, Portugal, covering a five-year period were used. The results of the binary model showed a good fit. To evaluate and compare the probabilistic method with other commonly used methods, measures were used to test the performance of each method in terms of its power to detect the "true" hot spots. The test results indicate that the proposed method is superior to two commonly used methods. The gains of using this method are related to the simplicity of its application, while critical issues such as prior distribution effect assumptions and the regression-to-the-mean phenomenon are overcome. Further, the proposed model provides a realistic and intuitive perspective and supports easy practical application.
id RCAP_f95822a6b2413aa5979ebbe303457abc
oai_identifier_str oai:repositorio-aberto.up.pt:10216/72361
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Hot-spot Identification: a Categorical Binary Model ApproachEngenharia civil, Engenharia civilCivil engineering, Civil engineeringThis paper presents an alternative methodology for hot-spot identification based on a probabilistic model. In this methodology, the ranking criterion for hot-spot identification conveys the probability of a site being a hot-spot or a non-hot spot. A binary choice model was used to link the outcome to a set of factors that characterize the risk of the sites under analysis based on our use of two categories (0/1) for the dependent variable. The proposed methodology consists of two main steps. First, a threshold value for the number of accidents is set to distinguish hot spots from safe sites (category 1 or 0, respectively). Based on this classification, a binary model is applied that allows the construction of an ordered site list using the probability of a site being a hot-spot. The second step involves the choice of a selection strategy. The selection strategy can target a fixed number of sites with the greatest probability or, alternatively, all sites exceeding a specific probability, such as 0.5. A demonstration of the proposed methodology is provided using simulated data. For the simulation design, urban intersection data from Porto, Portugal, covering a five-year period were used. The results of the binary model showed a good fit. To evaluate and compare the probabilistic method with other commonly used methods, measures were used to test the performance of each method in terms of its power to detect the "true" hot spots. The test results indicate that the proposed method is superior to two commonly used methods. The gains of using this method are related to the simplicity of its application, while critical issues such as prior distribution effect assumptions and the regression-to-the-mean phenomenon are overcome. Further, the proposed model provides a realistic and intuitive perspective and supports easy practical application.20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/72361eng10.3141/2386-01Sara FerreiraAntónio Fidalgo Coutoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T13:39:47Zoai:repositorio-aberto.up.pt:10216/72361Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:45:04.308532Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Hot-spot Identification: a Categorical Binary Model Approach
title Hot-spot Identification: a Categorical Binary Model Approach
spellingShingle Hot-spot Identification: a Categorical Binary Model Approach
Sara Ferreira
Engenharia civil, Engenharia civil
Civil engineering, Civil engineering
title_short Hot-spot Identification: a Categorical Binary Model Approach
title_full Hot-spot Identification: a Categorical Binary Model Approach
title_fullStr Hot-spot Identification: a Categorical Binary Model Approach
title_full_unstemmed Hot-spot Identification: a Categorical Binary Model Approach
title_sort Hot-spot Identification: a Categorical Binary Model Approach
author Sara Ferreira
author_facet Sara Ferreira
António Fidalgo Couto
author_role author
author2 António Fidalgo Couto
author2_role author
dc.contributor.author.fl_str_mv Sara Ferreira
António Fidalgo Couto
dc.subject.por.fl_str_mv Engenharia civil, Engenharia civil
Civil engineering, Civil engineering
topic Engenharia civil, Engenharia civil
Civil engineering, Civil engineering
description This paper presents an alternative methodology for hot-spot identification based on a probabilistic model. In this methodology, the ranking criterion for hot-spot identification conveys the probability of a site being a hot-spot or a non-hot spot. A binary choice model was used to link the outcome to a set of factors that characterize the risk of the sites under analysis based on our use of two categories (0/1) for the dependent variable. The proposed methodology consists of two main steps. First, a threshold value for the number of accidents is set to distinguish hot spots from safe sites (category 1 or 0, respectively). Based on this classification, a binary model is applied that allows the construction of an ordered site list using the probability of a site being a hot-spot. The second step involves the choice of a selection strategy. The selection strategy can target a fixed number of sites with the greatest probability or, alternatively, all sites exceeding a specific probability, such as 0.5. A demonstration of the proposed methodology is provided using simulated data. For the simulation design, urban intersection data from Porto, Portugal, covering a five-year period were used. The results of the binary model showed a good fit. To evaluate and compare the probabilistic method with other commonly used methods, measures were used to test the performance of each method in terms of its power to detect the "true" hot spots. The test results indicate that the proposed method is superior to two commonly used methods. The gains of using this method are related to the simplicity of its application, while critical issues such as prior distribution effect assumptions and the regression-to-the-mean phenomenon are overcome. Further, the proposed model provides a realistic and intuitive perspective and supports easy practical application.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/72361
url https://hdl.handle.net/10216/72361
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3141/2386-01
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135767324262400