Causal Consistency Verification in Restful Systems

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Hugo Miguel Grilo
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/158999
Resumo: Replicated systems cannot maintain both availability and (strong) consistency when exposed to network partitions. Strong consistency requires every read to return the last written value, which can lead clients to experience high latency or even timeout errors. Replicated applications usually rely on weak consistency, since clients can perform operations contacting a single replica, leading to decreased latency and increased availability. Causal consistency is a weak consistency model, however, it is the strongest one for highly available systems. Many applications are switching to this particular consistency model, since it ensures users never observe data items before they observe the ones that influenced their creation. Verifying if applications satisfy the consistency they claim to provide is no easy task. In this dissertation, we propose an algorithm to verify causal consistency in RESTful applications. Our approach adopts a black box testing, where multiple concurrent clients execute operations in a service and records the log of interactions. This log of interactions is then processed to verify if the results respect causal consistency. The key challenge is to infer causal dependencies among operations executed in different clients without adding any additional metadata to the data maintained by the service. When considering a particular operation, the algorithm builds a new dependency graph that considers one of the possible justifications the operation might have, but if this justification results in failure further ahead in the processing, it is necessary to build another graph considering another justification of that same operation. The algorithm relies on recursion in order to achieve this backtracking behaviour. If the algorithm is able to build a graph containing every operation present in the log, where the chosen justifications remain valid until the end of the processing, it outputs that the execution corresponding to that log satisfies causal consistency. The evaluation confirms that the algorithm is able to detect violations when feeding either small or large logs representing executions of RESTful applications that do not satisfy causal consistency.
id RCAP_f95be71cf69099c83b8b9f00dd09040b
oai_identifier_str oai:run.unl.pt:10362/158999
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Causal Consistency Verification in Restful SystemsDistributed SystemsRESTful ApplicationsCausal ConsistencyVectorClocksJepsenJepRESTDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaReplicated systems cannot maintain both availability and (strong) consistency when exposed to network partitions. Strong consistency requires every read to return the last written value, which can lead clients to experience high latency or even timeout errors. Replicated applications usually rely on weak consistency, since clients can perform operations contacting a single replica, leading to decreased latency and increased availability. Causal consistency is a weak consistency model, however, it is the strongest one for highly available systems. Many applications are switching to this particular consistency model, since it ensures users never observe data items before they observe the ones that influenced their creation. Verifying if applications satisfy the consistency they claim to provide is no easy task. In this dissertation, we propose an algorithm to verify causal consistency in RESTful applications. Our approach adopts a black box testing, where multiple concurrent clients execute operations in a service and records the log of interactions. This log of interactions is then processed to verify if the results respect causal consistency. The key challenge is to infer causal dependencies among operations executed in different clients without adding any additional metadata to the data maintained by the service. When considering a particular operation, the algorithm builds a new dependency graph that considers one of the possible justifications the operation might have, but if this justification results in failure further ahead in the processing, it is necessary to build another graph considering another justification of that same operation. The algorithm relies on recursion in order to achieve this backtracking behaviour. If the algorithm is able to build a graph containing every operation present in the log, where the chosen justifications remain valid until the end of the processing, it outputs that the execution corresponding to that log satisfies causal consistency. The evaluation confirms that the algorithm is able to detect violations when feeding either small or large logs representing executions of RESTful applications that do not satisfy causal consistency.Os sistemas replicados não podem manter a disponibilidade e a consistência (forte) quando expostos a partições de rede. A consistência forte exige que cada leitura retorne o último valor escrito, o que pode levar os clientes a experienciar alta latência ou até mesmo erros de tempo limite. As aplicações replicados geralmente usam consistência fraca, pois os clientes podem realizar operações contactando uma única réplica, levando a latências baixas e maior disponibilidade. A consistência causal é um modelo de consistência fraco, mas é o mais forte para sistemas altamente disponíveis. Muitas aplicações usam este modelo, pois garante que os clientes nunca observem dados antes de observar os que influenciaram a sua criação. Verificar se as aplicações satisfazem a consistência que alegam fornecer não é fácil. Nesta dissertação, propomos um algoritmo para verificar a consistência causal em aplicações RESTful. A nossa abordagem adota um teste de caixa negra, onde vários clientes concurrentes executam operações num serviço, onde as interações são documentadas num ficheiro. Este ficheiro é processado para verificar se os resultados respeitam a consistência causal. O principal desafio é inferir as dependências causais entre as operações executadas em diferentes clientes sem adicionar metadados adicionais aos dados mantidos pelo serviço. Ao considerar uma determinada operação, o algoritmo constrói um novo grafo de dependências que considera uma das possíveis justificações que a operação possa ter, mas se esta justificação resultar em erro mais tarde no processamento, é necessário construir outro grafo considerando outra justificação dessa mesma operação. O algoritmo é recursivo de modo a alcançar esse comportamento de retrocesso. Se o algoritmo conseguir construir um grafo que contém todas as operações presentes no ficheiro, onde as justificações escolhidas permanecem válidas até o final do processamento, indica que a execução correspondente a este ficheiro satisfaz a consistência causal. Aavaliação confirma que o algoritmo é capaz de detectar violações ao fornecer ficheiros pequenos ou grandes representando execuções de aplicações RESTful que não satisfazem a consistência causal.Preguiça, NunoFreitas, FilipeRUNRodrigues, Hugo Miguel Grilo2023-10-17T15:54:12Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/158999enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:41:29Zoai:run.unl.pt:10362/158999Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:57:22.318495Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Causal Consistency Verification in Restful Systems
title Causal Consistency Verification in Restful Systems
spellingShingle Causal Consistency Verification in Restful Systems
Rodrigues, Hugo Miguel Grilo
Distributed Systems
RESTful Applications
Causal Consistency
VectorClocks
Jepsen
JepREST
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Causal Consistency Verification in Restful Systems
title_full Causal Consistency Verification in Restful Systems
title_fullStr Causal Consistency Verification in Restful Systems
title_full_unstemmed Causal Consistency Verification in Restful Systems
title_sort Causal Consistency Verification in Restful Systems
author Rodrigues, Hugo Miguel Grilo
author_facet Rodrigues, Hugo Miguel Grilo
author_role author
dc.contributor.none.fl_str_mv Preguiça, Nuno
Freitas, Filipe
RUN
dc.contributor.author.fl_str_mv Rodrigues, Hugo Miguel Grilo
dc.subject.por.fl_str_mv Distributed Systems
RESTful Applications
Causal Consistency
VectorClocks
Jepsen
JepREST
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Distributed Systems
RESTful Applications
Causal Consistency
VectorClocks
Jepsen
JepREST
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Replicated systems cannot maintain both availability and (strong) consistency when exposed to network partitions. Strong consistency requires every read to return the last written value, which can lead clients to experience high latency or even timeout errors. Replicated applications usually rely on weak consistency, since clients can perform operations contacting a single replica, leading to decreased latency and increased availability. Causal consistency is a weak consistency model, however, it is the strongest one for highly available systems. Many applications are switching to this particular consistency model, since it ensures users never observe data items before they observe the ones that influenced their creation. Verifying if applications satisfy the consistency they claim to provide is no easy task. In this dissertation, we propose an algorithm to verify causal consistency in RESTful applications. Our approach adopts a black box testing, where multiple concurrent clients execute operations in a service and records the log of interactions. This log of interactions is then processed to verify if the results respect causal consistency. The key challenge is to infer causal dependencies among operations executed in different clients without adding any additional metadata to the data maintained by the service. When considering a particular operation, the algorithm builds a new dependency graph that considers one of the possible justifications the operation might have, but if this justification results in failure further ahead in the processing, it is necessary to build another graph considering another justification of that same operation. The algorithm relies on recursion in order to achieve this backtracking behaviour. If the algorithm is able to build a graph containing every operation present in the log, where the chosen justifications remain valid until the end of the processing, it outputs that the execution corresponding to that log satisfies causal consistency. The evaluation confirms that the algorithm is able to detect violations when feeding either small or large logs representing executions of RESTful applications that do not satisfy causal consistency.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
2023-10-17T15:54:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/158999
url http://hdl.handle.net/10362/158999
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138156687130624