Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , , , , , , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.2/14374 |
id |
RCAP_f9612d7108ff7932d86549f0283d6f3f |
---|---|
oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/14374 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, MoroccoRepositório AbertoJadoud, MouradEl Achheb, AbderrahimLaftouhi, NoureddineNamous, MustaphaKhouz, AbdellahTrindade, JorgeEl Bchari, FatimaBougadir, BlaidEloudi, HasnaRachidi, Said2023-07-12T18:00:57Z20232023-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.2/14374engJADOUD, M., EL ACHHEB, A., LAFTOUHI, N., NAMOUS, M., KHOUZ, A., TRINDADE, J., EL BCHARI, F., BOUGADIR, B., ELOUDI, H., RACHIDI, S. (2023) Machine Learning Models for Spatial Prediction of Groundwater Potentiality in a Large Semi-Arid Mountainous Region: Application to the Rherhaya Watershed, High Atlas, Morocco. EGU General Assembly 2023, Geophysical Research Abstracts, EGU23- 16375. 23 a 28 abril, Viena, Áustria.https://doi.org/10.5194/egusphere-egu23-16375info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-24T01:46:29Zoai:repositorioaberto.uab.pt:10400.2/14374Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-24T01:46:29Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
title |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
spellingShingle |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco Jadoud, Mourad |
title_short |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
title_full |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
title_fullStr |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
title_full_unstemmed |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
title_sort |
Machine learning models for spatial prediction of groundwater potentiality in a large semi-arid mountainous region: application to the rherhaya watershed, High Atlas, Morocco |
author |
Jadoud, Mourad |
author_facet |
Jadoud, Mourad El Achheb, Abderrahim Laftouhi, Noureddine Namous, Mustapha Khouz, Abdellah Trindade, Jorge El Bchari, Fatima Bougadir, Blaid Eloudi, Hasna Rachidi, Said |
author_role |
author |
author2 |
El Achheb, Abderrahim Laftouhi, Noureddine Namous, Mustapha Khouz, Abdellah Trindade, Jorge El Bchari, Fatima Bougadir, Blaid Eloudi, Hasna Rachidi, Said |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Aberto |
dc.contributor.author.fl_str_mv |
Jadoud, Mourad El Achheb, Abderrahim Laftouhi, Noureddine Namous, Mustapha Khouz, Abdellah Trindade, Jorge El Bchari, Fatima Bougadir, Blaid Eloudi, Hasna Rachidi, Said |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-12T18:00:57Z 2023 2023-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/14374 |
url |
http://hdl.handle.net/10400.2/14374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
JADOUD, M., EL ACHHEB, A., LAFTOUHI, N., NAMOUS, M., KHOUZ, A., TRINDADE, J., EL BCHARI, F., BOUGADIR, B., ELOUDI, H., RACHIDI, S. (2023) Machine Learning Models for Spatial Prediction of Groundwater Potentiality in a Large Semi-Arid Mountainous Region: Application to the Rherhaya Watershed, High Atlas, Morocco. EGU General Assembly 2023, Geophysical Research Abstracts, EGU23- 16375. 23 a 28 abril, Viena, Áustria. https://doi.org/10.5194/egusphere-egu23-16375 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543031324147712 |