Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series

Detalhes bibliográficos
Autor(a) principal: Ermida, Sofia L.
Data de Publicação: 2020
Outros Autores: Soares, Patrícia, Mantas, Vasco, Göttsche, Frank-M., Trigo, Isabel F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/106655
https://doi.org/10.3390/rs12091471
Resumo: Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.
id RCAP_f995d7d063bd5996a02dada891b74973
oai_identifier_str oai:estudogeral.uc.pt:10316/106655
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat SeriesLand Surface TemperatureLandsatGoogle Earth EngineASTER GEDhigh resolutionLand Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.MDPI2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/106655http://hdl.handle.net/10316/106655https://doi.org/10.3390/rs12091471eng2072-4292Ermida, Sofia L.Soares, PatríciaMantas, VascoGöttsche, Frank-M.Trigo, Isabel F.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-04-14T08:55:32Zoai:estudogeral.uc.pt:10316/106655Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:04.438815Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
title Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
spellingShingle Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
Ermida, Sofia L.
Land Surface Temperature
Landsat
Google Earth Engine
ASTER GED
high resolution
title_short Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
title_full Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
title_fullStr Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
title_full_unstemmed Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
title_sort Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series
author Ermida, Sofia L.
author_facet Ermida, Sofia L.
Soares, Patrícia
Mantas, Vasco
Göttsche, Frank-M.
Trigo, Isabel F.
author_role author
author2 Soares, Patrícia
Mantas, Vasco
Göttsche, Frank-M.
Trigo, Isabel F.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ermida, Sofia L.
Soares, Patrícia
Mantas, Vasco
Göttsche, Frank-M.
Trigo, Isabel F.
dc.subject.por.fl_str_mv Land Surface Temperature
Landsat
Google Earth Engine
ASTER GED
high resolution
topic Land Surface Temperature
Landsat
Google Earth Engine
ASTER GED
high resolution
description Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/106655
http://hdl.handle.net/10316/106655
https://doi.org/10.3390/rs12091471
url http://hdl.handle.net/10316/106655
https://doi.org/10.3390/rs12091471
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2072-4292
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134118760415232