On some categorical-algebraic conditions in S-protomodular categories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/43919 https://doi.org/10.23638/LMCS-13(3:18)2017 |
Resumo: | In the context of protomodular categories, several additional conditions have been considered in order to obtain a closer group-like behavior. Among them are locally algebraic cartesian closedness and algebraic coherence. The recent notion of S-protomodular category, whose main examples are the category of monoids and, more generally, categories of monoids with operations and Joónsson-Tarski varieties, raises a similar question: how to get a description of S-protomodular categories with a strong monoid-like behavior. In this paper we consider relative versions of the conditions mentioned above, in order to exhibit the parallelism with the "absolute" protomodular context and to obtain a hierarchy among S-protomodular categories. |
id |
RCAP_f9960d845eb8197e5b3da5e04cbd4fce |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/43919 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On some categorical-algebraic conditions in S-protomodular categoriesMathematics - Category TheoryIn the context of protomodular categories, several additional conditions have been considered in order to obtain a closer group-like behavior. Among them are locally algebraic cartesian closedness and algebraic coherence. The recent notion of S-protomodular category, whose main examples are the category of monoids and, more generally, categories of monoids with operations and Joónsson-Tarski varieties, raises a similar question: how to get a description of S-protomodular categories with a strong monoid-like behavior. In this paper we consider relative versions of the conditions mentioned above, in order to exhibit the parallelism with the "absolute" protomodular context and to obtain a hierarchy among S-protomodular categories.Logical Methods in Computer Science e. V.2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43919http://hdl.handle.net/10316/43919https://doi.org/10.23638/LMCS-13(3:18)2017enghttps://lmcs.episciences.org/3893/pdfMartins-Ferreira, NelsonMontoli, AndreaSobral, Manuelainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-05-24T13:22:02Zoai:estudogeral.uc.pt:10316/43919Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:30.215864Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On some categorical-algebraic conditions in S-protomodular categories |
title |
On some categorical-algebraic conditions in S-protomodular categories |
spellingShingle |
On some categorical-algebraic conditions in S-protomodular categories Martins-Ferreira, Nelson Mathematics - Category Theory |
title_short |
On some categorical-algebraic conditions in S-protomodular categories |
title_full |
On some categorical-algebraic conditions in S-protomodular categories |
title_fullStr |
On some categorical-algebraic conditions in S-protomodular categories |
title_full_unstemmed |
On some categorical-algebraic conditions in S-protomodular categories |
title_sort |
On some categorical-algebraic conditions in S-protomodular categories |
author |
Martins-Ferreira, Nelson |
author_facet |
Martins-Ferreira, Nelson Montoli, Andrea Sobral, Manuela |
author_role |
author |
author2 |
Montoli, Andrea Sobral, Manuela |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Martins-Ferreira, Nelson Montoli, Andrea Sobral, Manuela |
dc.subject.por.fl_str_mv |
Mathematics - Category Theory |
topic |
Mathematics - Category Theory |
description |
In the context of protomodular categories, several additional conditions have been considered in order to obtain a closer group-like behavior. Among them are locally algebraic cartesian closedness and algebraic coherence. The recent notion of S-protomodular category, whose main examples are the category of monoids and, more generally, categories of monoids with operations and Joónsson-Tarski varieties, raises a similar question: how to get a description of S-protomodular categories with a strong monoid-like behavior. In this paper we consider relative versions of the conditions mentioned above, in order to exhibit the parallelism with the "absolute" protomodular context and to obtain a hierarchy among S-protomodular categories. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/43919 http://hdl.handle.net/10316/43919 https://doi.org/10.23638/LMCS-13(3:18)2017 |
url |
http://hdl.handle.net/10316/43919 https://doi.org/10.23638/LMCS-13(3:18)2017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://lmcs.episciences.org/3893/pdf |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Logical Methods in Computer Science e. V. |
publisher.none.fl_str_mv |
Logical Methods in Computer Science e. V. |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821620191232 |