New sampling theorem and multiplicative filtering in the FRFT domain
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/26035 |
Resumo: | Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated. |
id |
RCAP_fa009d8bfacc01633a67fe342217257e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/26035 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
New sampling theorem and multiplicative filtering in the FRFT domainSampling theoremMultiplicative filterSignal processingConvolutionFractional Fourier transformHaving in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.Springer Verlag2020-02-04T00:00:00Z2019-01-01T00:00:00Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26035eng1863-170310.1007/s11760-019-01432-5Anh, P. K.Castro, Luís P.Thao, P. T.Tuan, N. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:26Zoai:ria.ua.pt:10773/26035Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:08.238180Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
New sampling theorem and multiplicative filtering in the FRFT domain |
title |
New sampling theorem and multiplicative filtering in the FRFT domain |
spellingShingle |
New sampling theorem and multiplicative filtering in the FRFT domain Anh, P. K. Sampling theorem Multiplicative filter Signal processing Convolution Fractional Fourier transform |
title_short |
New sampling theorem and multiplicative filtering in the FRFT domain |
title_full |
New sampling theorem and multiplicative filtering in the FRFT domain |
title_fullStr |
New sampling theorem and multiplicative filtering in the FRFT domain |
title_full_unstemmed |
New sampling theorem and multiplicative filtering in the FRFT domain |
title_sort |
New sampling theorem and multiplicative filtering in the FRFT domain |
author |
Anh, P. K. |
author_facet |
Anh, P. K. Castro, Luís P. Thao, P. T. Tuan, N. M. |
author_role |
author |
author2 |
Castro, Luís P. Thao, P. T. Tuan, N. M. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Anh, P. K. Castro, Luís P. Thao, P. T. Tuan, N. M. |
dc.subject.por.fl_str_mv |
Sampling theorem Multiplicative filter Signal processing Convolution Fractional Fourier transform |
topic |
Sampling theorem Multiplicative filter Signal processing Convolution Fractional Fourier transform |
description |
Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2019 2020-02-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/26035 |
url |
http://hdl.handle.net/10773/26035 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1863-1703 10.1007/s11760-019-01432-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137645635305472 |