New sampling theorem and multiplicative filtering in the FRFT domain

Detalhes bibliográficos
Autor(a) principal: Anh, P. K.
Data de Publicação: 2019
Outros Autores: Castro, Luís P., Thao, P. T., Tuan, N. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/26035
Resumo: Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.
id RCAP_fa009d8bfacc01633a67fe342217257e
oai_identifier_str oai:ria.ua.pt:10773/26035
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New sampling theorem and multiplicative filtering in the FRFT domainSampling theoremMultiplicative filterSignal processingConvolutionFractional Fourier transformHaving in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.Springer Verlag2020-02-04T00:00:00Z2019-01-01T00:00:00Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/26035eng1863-170310.1007/s11760-019-01432-5Anh, P. K.Castro, Luís P.Thao, P. T.Tuan, N. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:50:26Zoai:ria.ua.pt:10773/26035Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:08.238180Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New sampling theorem and multiplicative filtering in the FRFT domain
title New sampling theorem and multiplicative filtering in the FRFT domain
spellingShingle New sampling theorem and multiplicative filtering in the FRFT domain
Anh, P. K.
Sampling theorem
Multiplicative filter
Signal processing
Convolution
Fractional Fourier transform
title_short New sampling theorem and multiplicative filtering in the FRFT domain
title_full New sampling theorem and multiplicative filtering in the FRFT domain
title_fullStr New sampling theorem and multiplicative filtering in the FRFT domain
title_full_unstemmed New sampling theorem and multiplicative filtering in the FRFT domain
title_sort New sampling theorem and multiplicative filtering in the FRFT domain
author Anh, P. K.
author_facet Anh, P. K.
Castro, Luís P.
Thao, P. T.
Tuan, N. M.
author_role author
author2 Castro, Luís P.
Thao, P. T.
Tuan, N. M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Anh, P. K.
Castro, Luís P.
Thao, P. T.
Tuan, N. M.
dc.subject.por.fl_str_mv Sampling theorem
Multiplicative filter
Signal processing
Convolution
Fractional Fourier transform
topic Sampling theorem
Multiplicative filter
Signal processing
Convolution
Fractional Fourier transform
description Having in consideration a fractional convolution associated with the fractional Fourier transform (FRFT), we propose a novel reconstruction formula for bandlimited signals in the FRFT domain without using the classical Shannon theorem. This may be considered the main contribution of this work, and numerical experiments are implemented to demonstrate the effectiveness of the proposed sampling theorem. As a second goal, we also look for the designing of multiplicative filters. Indeed, we also convert the multiplicative filtering in FRFT domain to the time domain, which can be realized by Fast Fourier transform. Two concrete examples are included where the use of the present results is illustrated.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01T00:00:00Z
2019
2020-02-04T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/26035
url http://hdl.handle.net/10773/26035
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1863-1703
10.1007/s11760-019-01432-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137645635305472