Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/28633 |
Resumo: | OBJECTIVES: It is well-known the establishment of steep oxygen gradients in cystic fibrosis (CF) airways mucus, giving rise to hypoxic or anaerobic zones in the deeper mucus layers, where traditional and atypical bacteria may accommodate and proliferate to biofilms. This study aimed to compare the influence of low-oxygen atmospheres on biofilm growth and susceptibility profiles of the CF-atypical species Inquilinus limosus and Dolosigranulum pigrum with the traditional Pseudomonas aeruginosa. METHODS: Single biofilms encompassing each species were formed in vitro under aerobic, micraerophilic and anaerobic environments, and further evaluated in terms of biomass and respiratory activity. The antibiotic resistance propensity of planktonic and biofilm-cells was also analyzed by measuring the MICs and MBECs, respectively. RESULTS: Both traditional and unusual species were proficient to develop biofilms under all oxygen environments, with the facultative anaerobe D. pigrum demonstrating the greatest facility to accumulate high amounts of biomass and respiratory activities. Regarding the resistance propensity, planktonic populations of P. aeruginosa and D. pigrum showed antibiotic tolerance under non oxygen-restricted environments, reducing their resistance under micraerophilic and anaerobic conditions. Independently of the oxygen availability, it was noticed a markedly decline of the antibiotic action against the pre-established biofilms, requiring higher doses to eliminate biofilm-encased cells. Although the resistance of P. aeruginosa biofilms has displayed the same tendency as the planktonic populations, the biofilm consortia involving I. limosus and D. pigrum became exceptionally more resistant to antibiotics when compared to those bacteria seeded from the biofilms, persevering this multidrug resistance under hypoxic and anaerobic atmospheres. CONCLUSION: This study highlights a potential prospect on the impact of non-conventional organisms on CF lung infections, showing their great capacity to easily adapt to biofilm mode of life under atmospheres with restricted oxygen, as it is believed to occur in CF airways, which may endanger the efficacy of current antibiotic regimens in CF. |
id |
RCAP_fa7e895e63ef4bafa15f97be0e46e35e |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/28633 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airwaysCystic fibrosisLow-oxygen environmentsBiofilm resistanceOBJECTIVES: It is well-known the establishment of steep oxygen gradients in cystic fibrosis (CF) airways mucus, giving rise to hypoxic or anaerobic zones in the deeper mucus layers, where traditional and atypical bacteria may accommodate and proliferate to biofilms. This study aimed to compare the influence of low-oxygen atmospheres on biofilm growth and susceptibility profiles of the CF-atypical species Inquilinus limosus and Dolosigranulum pigrum with the traditional Pseudomonas aeruginosa. METHODS: Single biofilms encompassing each species were formed in vitro under aerobic, micraerophilic and anaerobic environments, and further evaluated in terms of biomass and respiratory activity. The antibiotic resistance propensity of planktonic and biofilm-cells was also analyzed by measuring the MICs and MBECs, respectively. RESULTS: Both traditional and unusual species were proficient to develop biofilms under all oxygen environments, with the facultative anaerobe D. pigrum demonstrating the greatest facility to accumulate high amounts of biomass and respiratory activities. Regarding the resistance propensity, planktonic populations of P. aeruginosa and D. pigrum showed antibiotic tolerance under non oxygen-restricted environments, reducing their resistance under micraerophilic and anaerobic conditions. Independently of the oxygen availability, it was noticed a markedly decline of the antibiotic action against the pre-established biofilms, requiring higher doses to eliminate biofilm-encased cells. Although the resistance of P. aeruginosa biofilms has displayed the same tendency as the planktonic populations, the biofilm consortia involving I. limosus and D. pigrum became exceptionally more resistant to antibiotics when compared to those bacteria seeded from the biofilms, persevering this multidrug resistance under hypoxic and anaerobic atmospheres. CONCLUSION: This study highlights a potential prospect on the impact of non-conventional organisms on CF lung infections, showing their great capacity to easily adapt to biofilm mode of life under atmospheres with restricted oxygen, as it is believed to occur in CF airways, which may endanger the efficacy of current antibiotic regimens in CF.Universidade do MinhoLopes, Susana PatríciaAzevedo, N. F.Pereira, Maria Olívia20132013-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/28633enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T07:11:45Zoai:repositorium.sdum.uminho.pt:1822/28633Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T07:11:45Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
title |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
spellingShingle |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways Lopes, Susana Patrícia Cystic fibrosis Low-oxygen environments Biofilm resistance |
title_short |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
title_full |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
title_fullStr |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
title_full_unstemmed |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
title_sort |
Impact of hypoxic and anaerobic environments on multidrug-resistance of emerging species found in cystic fibrosis airways |
author |
Lopes, Susana Patrícia |
author_facet |
Lopes, Susana Patrícia Azevedo, N. F. Pereira, Maria Olívia |
author_role |
author |
author2 |
Azevedo, N. F. Pereira, Maria Olívia |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Lopes, Susana Patrícia Azevedo, N. F. Pereira, Maria Olívia |
dc.subject.por.fl_str_mv |
Cystic fibrosis Low-oxygen environments Biofilm resistance |
topic |
Cystic fibrosis Low-oxygen environments Biofilm resistance |
description |
OBJECTIVES: It is well-known the establishment of steep oxygen gradients in cystic fibrosis (CF) airways mucus, giving rise to hypoxic or anaerobic zones in the deeper mucus layers, where traditional and atypical bacteria may accommodate and proliferate to biofilms. This study aimed to compare the influence of low-oxygen atmospheres on biofilm growth and susceptibility profiles of the CF-atypical species Inquilinus limosus and Dolosigranulum pigrum with the traditional Pseudomonas aeruginosa. METHODS: Single biofilms encompassing each species were formed in vitro under aerobic, micraerophilic and anaerobic environments, and further evaluated in terms of biomass and respiratory activity. The antibiotic resistance propensity of planktonic and biofilm-cells was also analyzed by measuring the MICs and MBECs, respectively. RESULTS: Both traditional and unusual species were proficient to develop biofilms under all oxygen environments, with the facultative anaerobe D. pigrum demonstrating the greatest facility to accumulate high amounts of biomass and respiratory activities. Regarding the resistance propensity, planktonic populations of P. aeruginosa and D. pigrum showed antibiotic tolerance under non oxygen-restricted environments, reducing their resistance under micraerophilic and anaerobic conditions. Independently of the oxygen availability, it was noticed a markedly decline of the antibiotic action against the pre-established biofilms, requiring higher doses to eliminate biofilm-encased cells. Although the resistance of P. aeruginosa biofilms has displayed the same tendency as the planktonic populations, the biofilm consortia involving I. limosus and D. pigrum became exceptionally more resistant to antibiotics when compared to those bacteria seeded from the biofilms, persevering this multidrug resistance under hypoxic and anaerobic atmospheres. CONCLUSION: This study highlights a potential prospect on the impact of non-conventional organisms on CF lung infections, showing their great capacity to easily adapt to biofilm mode of life under atmospheres with restricted oxygen, as it is believed to occur in CF airways, which may endanger the efficacy of current antibiotic regimens in CF. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/28633 |
url |
http://hdl.handle.net/1822/28633 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545235465502720 |