Multi Stimuli-responsive Organic Salts: From preparation to functional device application
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/20453 |
Resumo: | The discovery of novel and efficient stimuli-responsive materials that change their properties according to external stimuli and therefore, adjust to our demands become an interesting research topic for several potential applications. The integration of the most promissory stimuli-responsive materials in devices for antiglare car mirrors, smart windows, sunglasses, sensors, among others has been applied. In this thesis, the development and application of stimuli-responsive materials containing ionic photochromic or electrochromic units have been explored. In general, it is possible to incorporate specific scaffolds possessing pH, temperature, and light or electron-transfer stimuli-responsive behaviour in the cation or anion structures. Also, ionic polymers based on these structures have been investigated. In this context, 4,4’-bipyridinium, diarylethenes and flavylium were selected as electrochromic and photochromic units, respectively. For the preparation of the selected organic salts including polymers, different synthetic routes and purification processes have been followed. Detailed characterization of all prepared salts by spectroscopic techniques in order to elucidate their structures and purities has been performed. Thermal, rheological, photochemical and electrochemical properties of some prepared salts were also studied. It is important to focus that the adequate selection of the counter-ions can be crucial to achieve ionic liquids as well as to tune their final properties. The most promissory electrochromic salts based on 4,4’-bipyridinium symmetrical and non-symmetrical di and tetra-cations as well as ionic polymers were tested in liquid, gel or solid electrochromic devices. The substituents from bipyridinium scaffold as well as counter-ions can significantly influence the electrochromic performance in particular its reversibility; stability; colour contrast and transition times. Photochromic Room Temperature Ionic Liquid based on the combination of diarylethene derivative anion with tri-octyl methylammonium ([ALIQUAT]) cation was developed and characterized. Additionally, a new thermal, pH and photo-stimuli responsive co-polymer containing N-isopropylacrylamide and flavylium derivative have been prepared. The chemical versatility of the prepared ionic photo- and electrochromic materials opens excellent perspectives for future applications as efficient and reversible multi stimuli-responsive materials. |
id |
RCAP_fa9e9ac3606ecb2051b85493cd970bd7 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/20453 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multi Stimuli-responsive Organic Salts: From preparation to functional device applicationIonic LiquidsElectrochromismPhotochromismStimuli-responsive materialsIonic PolymersDomínio/Área Científica::Engenharia e Tecnologia::Engenharia QuímicaThe discovery of novel and efficient stimuli-responsive materials that change their properties according to external stimuli and therefore, adjust to our demands become an interesting research topic for several potential applications. The integration of the most promissory stimuli-responsive materials in devices for antiglare car mirrors, smart windows, sunglasses, sensors, among others has been applied. In this thesis, the development and application of stimuli-responsive materials containing ionic photochromic or electrochromic units have been explored. In general, it is possible to incorporate specific scaffolds possessing pH, temperature, and light or electron-transfer stimuli-responsive behaviour in the cation or anion structures. Also, ionic polymers based on these structures have been investigated. In this context, 4,4’-bipyridinium, diarylethenes and flavylium were selected as electrochromic and photochromic units, respectively. For the preparation of the selected organic salts including polymers, different synthetic routes and purification processes have been followed. Detailed characterization of all prepared salts by spectroscopic techniques in order to elucidate their structures and purities has been performed. Thermal, rheological, photochemical and electrochemical properties of some prepared salts were also studied. It is important to focus that the adequate selection of the counter-ions can be crucial to achieve ionic liquids as well as to tune their final properties. The most promissory electrochromic salts based on 4,4’-bipyridinium symmetrical and non-symmetrical di and tetra-cations as well as ionic polymers were tested in liquid, gel or solid electrochromic devices. The substituents from bipyridinium scaffold as well as counter-ions can significantly influence the electrochromic performance in particular its reversibility; stability; colour contrast and transition times. Photochromic Room Temperature Ionic Liquid based on the combination of diarylethene derivative anion with tri-octyl methylammonium ([ALIQUAT]) cation was developed and characterized. Additionally, a new thermal, pH and photo-stimuli responsive co-polymer containing N-isopropylacrylamide and flavylium derivative have been prepared. The chemical versatility of the prepared ionic photo- and electrochromic materials opens excellent perspectives for future applications as efficient and reversible multi stimuli-responsive materials.Branco, LuísParola, A. J.RUNJordão, Noémi Tamar do Carmo2019-04-01T00:30:23Z2017-022017-042017-02-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/20453TID:101548427enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:25:11Zoai:run.unl.pt:10362/20453Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:25:11Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
title |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
spellingShingle |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application Jordão, Noémi Tamar do Carmo Ionic Liquids Electrochromism Photochromism Stimuli-responsive materials Ionic Polymers Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química |
title_short |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
title_full |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
title_fullStr |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
title_full_unstemmed |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
title_sort |
Multi Stimuli-responsive Organic Salts: From preparation to functional device application |
author |
Jordão, Noémi Tamar do Carmo |
author_facet |
Jordão, Noémi Tamar do Carmo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Branco, Luís Parola, A. J. RUN |
dc.contributor.author.fl_str_mv |
Jordão, Noémi Tamar do Carmo |
dc.subject.por.fl_str_mv |
Ionic Liquids Electrochromism Photochromism Stimuli-responsive materials Ionic Polymers Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química |
topic |
Ionic Liquids Electrochromism Photochromism Stimuli-responsive materials Ionic Polymers Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Química |
description |
The discovery of novel and efficient stimuli-responsive materials that change their properties according to external stimuli and therefore, adjust to our demands become an interesting research topic for several potential applications. The integration of the most promissory stimuli-responsive materials in devices for antiglare car mirrors, smart windows, sunglasses, sensors, among others has been applied. In this thesis, the development and application of stimuli-responsive materials containing ionic photochromic or electrochromic units have been explored. In general, it is possible to incorporate specific scaffolds possessing pH, temperature, and light or electron-transfer stimuli-responsive behaviour in the cation or anion structures. Also, ionic polymers based on these structures have been investigated. In this context, 4,4’-bipyridinium, diarylethenes and flavylium were selected as electrochromic and photochromic units, respectively. For the preparation of the selected organic salts including polymers, different synthetic routes and purification processes have been followed. Detailed characterization of all prepared salts by spectroscopic techniques in order to elucidate their structures and purities has been performed. Thermal, rheological, photochemical and electrochemical properties of some prepared salts were also studied. It is important to focus that the adequate selection of the counter-ions can be crucial to achieve ionic liquids as well as to tune their final properties. The most promissory electrochromic salts based on 4,4’-bipyridinium symmetrical and non-symmetrical di and tetra-cations as well as ionic polymers were tested in liquid, gel or solid electrochromic devices. The substituents from bipyridinium scaffold as well as counter-ions can significantly influence the electrochromic performance in particular its reversibility; stability; colour contrast and transition times. Photochromic Room Temperature Ionic Liquid based on the combination of diarylethene derivative anion with tri-octyl methylammonium ([ALIQUAT]) cation was developed and characterized. Additionally, a new thermal, pH and photo-stimuli responsive co-polymer containing N-isopropylacrylamide and flavylium derivative have been prepared. The chemical versatility of the prepared ionic photo- and electrochromic materials opens excellent perspectives for future applications as efficient and reversible multi stimuli-responsive materials. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 2017-04 2017-02-01T00:00:00Z 2019-04-01T00:30:23Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/20453 TID:101548427 |
url |
http://hdl.handle.net/10362/20453 |
identifier_str_mv |
TID:101548427 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545583390359552 |