Modelling urban sprawl using remotely sensed data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.3390/e19040163 |
Resumo: | Padmanaban, R., Bhowmik, A. K., Cabral, P., Zamyatin, A., Almegdadi, O., & Wang, S. (2017). Modelling urban sprawl using remotely sensed data: A case study of Chennai city, Tamilnadu. Entropy, 19(4), 1-14. [163]. https://doi.org/10.3390/e19040163 |
id |
RCAP_fad342dab4049ae748b89e28e9cb47e5 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/27408 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling urban sprawl using remotely sensed dataA case study of Chennai city, TamilnaduChennaiLand change modellingRandom forest classificationRemote sensingRenyi's entropySpatial metricsSustainabilityUrban growth modelUrban sprawlPhysics and Astronomy(all)SDG 15 - Life on LandPadmanaban, R., Bhowmik, A. K., Cabral, P., Zamyatin, A., Almegdadi, O., & Wang, S. (2017). Modelling urban sprawl using remotely sensed data: A case study of Chennai city, Tamilnadu. Entropy, 19(4), 1-14. [163]. https://doi.org/10.3390/e19040163Urban sprawl (US), propelled by rapid population growth leads to the shrinkage of productive agricultural lands and pristine forests in the suburban areas and, in turn, adversely affects the provision of ecosystem services. The quantification of US is thus crucial for effective urban planning and environmental management. Like many megacities in fast growing developing countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has experienced extensive US triggered by the doubling of total population over the past three decades. However, the extent and level of US has not yet been quantified and a prediction for future extent of US is lacking. We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, and 2016, and computed six landscape metrics to delineate the extent of urban areas within a 10 km suburban buffer of Chennai. The level of US was then quantified using Renyi's entropy. A land change model was subsequently used to project land cover for 2027. A 70.35% expansion in urban areas was observed mainly towards the suburban periphery of Chennai between 1991 and 2016. The Renyi's entropy value for year 2016 was 0.9, exhibiting a two-fold level of US when compared to 1991. The spatial metrics values indicate that the existing urban areas became denser and the suburban agricultural, forests and particularly barren lands were transformed into fragmented urban settlements. The forecasted land cover for 2027 indicates a conversion of 13,670.33 ha (16.57% of the total landscape) of existing forests and agricultural lands into urban areas with an associated increase in the entropy value to 1.7, indicating a tremendous level of US. Our study provides useful metrics for urban planning authorities to address the social-ecological consequences of US and to protect ecosystem services.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNPadmanaban, RajchandarBhowmik, Avit K.Cabral, PedroZamyatin, AlexanderAlmegdadi, OraibWang, Shuangao2017-12-28T23:10:17Z2017-04-072017-04-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.3390/e19040163eng1099-4300PURE: 3260902http://www.scopus.com/inward/record.url?scp=85024484929&partnerID=8YFLogxKhttps://doi.org/10.3390/e19040163info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:14:29Zoai:run.unl.pt:10362/27408Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:28:40.772628Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling urban sprawl using remotely sensed data A case study of Chennai city, Tamilnadu |
title |
Modelling urban sprawl using remotely sensed data |
spellingShingle |
Modelling urban sprawl using remotely sensed data Padmanaban, Rajchandar Chennai Land change modelling Random forest classification Remote sensing Renyi's entropy Spatial metrics Sustainability Urban growth model Urban sprawl Physics and Astronomy(all) SDG 15 - Life on Land |
title_short |
Modelling urban sprawl using remotely sensed data |
title_full |
Modelling urban sprawl using remotely sensed data |
title_fullStr |
Modelling urban sprawl using remotely sensed data |
title_full_unstemmed |
Modelling urban sprawl using remotely sensed data |
title_sort |
Modelling urban sprawl using remotely sensed data |
author |
Padmanaban, Rajchandar |
author_facet |
Padmanaban, Rajchandar Bhowmik, Avit K. Cabral, Pedro Zamyatin, Alexander Almegdadi, Oraib Wang, Shuangao |
author_role |
author |
author2 |
Bhowmik, Avit K. Cabral, Pedro Zamyatin, Alexander Almegdadi, Oraib Wang, Shuangao |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Padmanaban, Rajchandar Bhowmik, Avit K. Cabral, Pedro Zamyatin, Alexander Almegdadi, Oraib Wang, Shuangao |
dc.subject.por.fl_str_mv |
Chennai Land change modelling Random forest classification Remote sensing Renyi's entropy Spatial metrics Sustainability Urban growth model Urban sprawl Physics and Astronomy(all) SDG 15 - Life on Land |
topic |
Chennai Land change modelling Random forest classification Remote sensing Renyi's entropy Spatial metrics Sustainability Urban growth model Urban sprawl Physics and Astronomy(all) SDG 15 - Life on Land |
description |
Padmanaban, R., Bhowmik, A. K., Cabral, P., Zamyatin, A., Almegdadi, O., & Wang, S. (2017). Modelling urban sprawl using remotely sensed data: A case study of Chennai city, Tamilnadu. Entropy, 19(4), 1-14. [163]. https://doi.org/10.3390/e19040163 |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-28T23:10:17Z 2017-04-07 2017-04-07T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.3390/e19040163 |
url |
https://doi.org/10.3390/e19040163 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1099-4300 PURE: 3260902 http://www.scopus.com/inward/record.url?scp=85024484929&partnerID=8YFLogxK https://doi.org/10.3390/e19040163 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137912679301120 |