Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/60586 |
Resumo: | This paper is devoted to the study of the initial value problem of nonlinear fractional differential equations involving a Caputo-type fractional derivative with respect to another function. Existence and uniqueness results for the problem are established by means of the some standard fixed point theorems. Next, we develop the Picard iteration method for solving numerically the problem and obtain results on the long-term behavior of solutions. Finally, we analyze a population growth model and a gross domestic product model with governing equations being fractional differential equations that we have introduced in this work. |
id |
RCAP_fb0205349e3feb76095bf030f15cb184 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/60586 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applicationsFractional calculusFractional differential equationsPopulation growth modelGross domestic product modelScience & TechnologyThis paper is devoted to the study of the initial value problem of nonlinear fractional differential equations involving a Caputo-type fractional derivative with respect to another function. Existence and uniqueness results for the problem are established by means of the some standard fixed point theorems. Next, we develop the Picard iteration method for solving numerically the problem and obtain results on the long-term behavior of solutions. Finally, we analyze a population growth model and a gross domestic product model with governing equations being fractional differential equations that we have introduced in this work.R. Almeida was supported by Portuguese funds through the CIDMA-Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), within project UID/MAT/04106/2013; A. B. Malinowska by the Bialystok University of Technology grant S/WI/1/2016, and M. T. Monteiro by COMPETE: POCI-01-0145-FEDER-007043 and FCT-Fundação para a Ciência e a Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersionWileyUniversidade do MinhoAlmeida, RicardoMalinowska, Agnieszka B.Monteiro, M. Teresa T.20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/60586eng0170-42141099-147610.1002/mma.4617info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:08:33Zoai:repositorium.sdum.uminho.pt:1822/60586Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:59:47.028037Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
title |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
spellingShingle |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications Almeida, Ricardo Fractional calculus Fractional differential equations Population growth model Gross domestic product model Science & Technology |
title_short |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
title_full |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
title_fullStr |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
title_full_unstemmed |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
title_sort |
Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo Malinowska, Agnieszka B. Monteiro, M. Teresa T. |
author_role |
author |
author2 |
Malinowska, Agnieszka B. Monteiro, M. Teresa T. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo Malinowska, Agnieszka B. Monteiro, M. Teresa T. |
dc.subject.por.fl_str_mv |
Fractional calculus Fractional differential equations Population growth model Gross domestic product model Science & Technology |
topic |
Fractional calculus Fractional differential equations Population growth model Gross domestic product model Science & Technology |
description |
This paper is devoted to the study of the initial value problem of nonlinear fractional differential equations involving a Caputo-type fractional derivative with respect to another function. Existence and uniqueness results for the problem are established by means of the some standard fixed point theorems. Next, we develop the Picard iteration method for solving numerically the problem and obtain results on the long-term behavior of solutions. Finally, we analyze a population growth model and a gross domestic product model with governing equations being fractional differential equations that we have introduced in this work. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/60586 |
url |
http://hdl.handle.net/1822/60586 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0170-4214 1099-1476 10.1002/mma.4617 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132390680952832 |