Online robust optimization framework for QoS guarantees in distributed soft real-time systems

Detalhes bibliográficos
Autor(a) principal: Lee, Jinkyu
Data de Publicação: 2010
Outros Autores: Shin, Insik, Easwaran, Arvind
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/3905
Resumo: In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
id RCAP_fb50ed3349bccaf1803e2905a6a5bce3
oai_identifier_str oai:recipp.ipp.pt:10400.22/3905
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Online robust optimization framework for QoS guarantees in distributed soft real-time systemsSoft real-time systemsRobust optimizationQoS guaranteeIn distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.ACMRepositório Científico do Instituto Politécnico do PortoLee, JinkyuShin, InsikEaswaran, Arvind2014-02-14T15:29:24Z20102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/3905eng978-1-60558-904-610.1145/1879021.1879034metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T12:43:45Zoai:recipp.ipp.pt:10400.22/3905Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:24:52.505540Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Online robust optimization framework for QoS guarantees in distributed soft real-time systems
title Online robust optimization framework for QoS guarantees in distributed soft real-time systems
spellingShingle Online robust optimization framework for QoS guarantees in distributed soft real-time systems
Lee, Jinkyu
Soft real-time systems
Robust optimization
QoS guarantee
title_short Online robust optimization framework for QoS guarantees in distributed soft real-time systems
title_full Online robust optimization framework for QoS guarantees in distributed soft real-time systems
title_fullStr Online robust optimization framework for QoS guarantees in distributed soft real-time systems
title_full_unstemmed Online robust optimization framework for QoS guarantees in distributed soft real-time systems
title_sort Online robust optimization framework for QoS guarantees in distributed soft real-time systems
author Lee, Jinkyu
author_facet Lee, Jinkyu
Shin, Insik
Easwaran, Arvind
author_role author
author2 Shin, Insik
Easwaran, Arvind
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Lee, Jinkyu
Shin, Insik
Easwaran, Arvind
dc.subject.por.fl_str_mv Soft real-time systems
Robust optimization
QoS guarantee
topic Soft real-time systems
Robust optimization
QoS guarantee
description In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
publishDate 2010
dc.date.none.fl_str_mv 2010
2010-01-01T00:00:00Z
2014-02-14T15:29:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/3905
url http://hdl.handle.net/10400.22/3905
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-1-60558-904-6
10.1145/1879021.1879034
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ACM
publisher.none.fl_str_mv ACM
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131341392969728