Analyzing multiple outcomes: is it really worth the use of multivariate linear regression?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/7601 |
Resumo: | In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency. |
id |
RCAP_fc26632c929177771f3b45c0b676797d |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/7601 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression?Ordinary least squaresCorrelated errorsGeneralized least squaresMonte CarloIn health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency.Repositório Científico do Instituto Politécnico do PortoOliveira, RosaTeixeira-Pinto, Armando2016-02-02T10:26:10Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7601engOliveira, R., & Pinto, A. T. (2015). Analyzing Multiple Outcomes: Is it Really Worth the use of Multivariate Linear Regression? Journal of Biometrics & Biostatistics, 1–6. https://www.hilarispublisher.com/open-access/analyzing-multiple-outcomes-is-it-really-worth-the-use-ofmultivariate-linear-regression-2155-6180-1000256.pdf10.4172/2155-6180.1000256info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-20T01:52:58Zoai:recipp.ipp.pt:10400.22/7601Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:28:02.441257Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
title |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
spellingShingle |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? Oliveira, Rosa Ordinary least squares Correlated errors Generalized least squares Monte Carlo |
title_short |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
title_full |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
title_fullStr |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
title_full_unstemmed |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
title_sort |
Analyzing multiple outcomes: is it really worth the use of multivariate linear regression? |
author |
Oliveira, Rosa |
author_facet |
Oliveira, Rosa Teixeira-Pinto, Armando |
author_role |
author |
author2 |
Teixeira-Pinto, Armando |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Oliveira, Rosa Teixeira-Pinto, Armando |
dc.subject.por.fl_str_mv |
Ordinary least squares Correlated errors Generalized least squares Monte Carlo |
topic |
Ordinary least squares Correlated errors Generalized least squares Monte Carlo |
description |
In health related research it is common to have multiple outcomes of interest in a single study. These outcomes are often analysed separately, ignoring the correlation between them. One would expect that a multivariate approach would be a more efficient alternative to individual analyses of each outcome. Surprisingly, this is not always the case. In this article we discuss different settings of linear models and compare the multivariate and univariate approaches. We show that for linear regression models, the estimates of the regression parameters associated with covariates that are shared across the outcomes are the same for the multivariate and univariate models while for outcome-specific covariates the multivariate model performs better in terms of efficiency. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z 2016-02-02T10:26:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/7601 |
url |
http://hdl.handle.net/10400.22/7601 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Oliveira, R., & Pinto, A. T. (2015). Analyzing Multiple Outcomes: Is it Really Worth the use of Multivariate Linear Regression? Journal of Biometrics & Biostatistics, 1–6. https://www.hilarispublisher.com/open-access/analyzing-multiple-outcomes-is-it-really-worth-the-use-ofmultivariate-linear-regression-2155-6180-1000256.pdf 10.4172/2155-6180.1000256 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131376439525376 |