Sentiment classification using tree‐based gated recurrent units
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/33869 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
id |
RCAP_fc8dcb8837d2eda0562ac0c2093f9267 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/33869 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sentiment classification using tree‐based gated recurrent unitsDeep LearningNatural Language ProcessingRecursive Neural NetworksSentiment ClassificationDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceNatural Language Processing is one of the most challenging fields of Artificial Intelligence. The past 10 years, this field has witnessed a fascinating progress due to Deep Learning. Despite that, we haven’t achieved to build an architecture of models that can understand natural language as humans do. Many architectures have been proposed, each of them having its own strengths and weaknesses. In this report, we will cover the tree based architectures and in particular we will propose a different tree based architecture that is very similar to the Tree-Based LSTM, proposed by Tai(2015). In this work, we aim to make a critical comparison between the proposed architecture -Tree-Based GRU- with Tree-based LSTM for sentiment classification tasks, both binary and fine-grained.Henriques, Roberto André PereiraRUNTsakalos, Vasileios2018-04-05T14:52:50Z2018-03-262018-03-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/33869TID:201894556enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:18:36Zoai:run.unl.pt:10362/33869Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:30:05.755444Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sentiment classification using tree‐based gated recurrent units |
title |
Sentiment classification using tree‐based gated recurrent units |
spellingShingle |
Sentiment classification using tree‐based gated recurrent units Tsakalos, Vasileios Deep Learning Natural Language Processing Recursive Neural Networks Sentiment Classification |
title_short |
Sentiment classification using tree‐based gated recurrent units |
title_full |
Sentiment classification using tree‐based gated recurrent units |
title_fullStr |
Sentiment classification using tree‐based gated recurrent units |
title_full_unstemmed |
Sentiment classification using tree‐based gated recurrent units |
title_sort |
Sentiment classification using tree‐based gated recurrent units |
author |
Tsakalos, Vasileios |
author_facet |
Tsakalos, Vasileios |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Tsakalos, Vasileios |
dc.subject.por.fl_str_mv |
Deep Learning Natural Language Processing Recursive Neural Networks Sentiment Classification |
topic |
Deep Learning Natural Language Processing Recursive Neural Networks Sentiment Classification |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business Intelligence |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04-05T14:52:50Z 2018-03-26 2018-03-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/33869 TID:201894556 |
url |
http://hdl.handle.net/10362/33869 |
identifier_str_mv |
TID:201894556 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137925233901568 |