Predicting product sales in fashion retailing: a data analytics approach

Detalhes bibliográficos
Autor(a) principal: Nelson da Silva Alves
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/106489
Resumo: In the retail context, an erroneous determination of the amounts to buy of each article from the suppliers, either by excess or defect, can result in unnecessary costs of storage or lost sales, respectively. Both situations should be avoided by companies, which promotes the need to determine purchase quantities efficiently. Currently companies collect huge amounts of data referring to their sales and products' features. In the past, that information was seldom analyzed and integrated in the decision making process. However, the increase of the information processing capacity has promoted the use of data analytics as a means to obtain knowledge and support decision makers in achieving better business outcomes. Therefore, the development of models which use the different factors which influences sales and produces precise predictions of future sales represents a very promising strategy. The results obtained could be very valuable to the companies, as they enable companies to align the amount to buy from the suppliers with the potential sales. This project aims at exploring the use of data mining techniques to optimize the amounts to buy of each product sold by a fashion retail company. The project results in the development of a model that uses past sales data of the products with similar characteristics to predict the quantity the company will potentially sell from the new products. The project will use as a case study a Portuguese fashion retail company. To validate the model it will be used several linear regression measures to quantify model quality.
id RCAP_fc8ef8cd15ca4b4bfbf36eade8c10d14
oai_identifier_str oai:repositorio-aberto.up.pt:10216/106489
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predicting product sales in fashion retailing: a data analytics approachEngenharia electrotécnica, electrónica e informáticaElectrical engineering, Electronic engineering, Information engineeringIn the retail context, an erroneous determination of the amounts to buy of each article from the suppliers, either by excess or defect, can result in unnecessary costs of storage or lost sales, respectively. Both situations should be avoided by companies, which promotes the need to determine purchase quantities efficiently. Currently companies collect huge amounts of data referring to their sales and products' features. In the past, that information was seldom analyzed and integrated in the decision making process. However, the increase of the information processing capacity has promoted the use of data analytics as a means to obtain knowledge and support decision makers in achieving better business outcomes. Therefore, the development of models which use the different factors which influences sales and produces precise predictions of future sales represents a very promising strategy. The results obtained could be very valuable to the companies, as they enable companies to align the amount to buy from the suppliers with the potential sales. This project aims at exploring the use of data mining techniques to optimize the amounts to buy of each product sold by a fashion retail company. The project results in the development of a model that uses past sales data of the products with similar characteristics to predict the quantity the company will potentially sell from the new products. The project will use as a case study a Portuguese fashion retail company. To validate the model it will be used several linear regression measures to quantify model quality.2017-07-102017-07-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/106489TID:201801655engNelson da Silva Alvesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T12:44:00Zoai:repositorio-aberto.up.pt:10216/106489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:25:38.308831Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predicting product sales in fashion retailing: a data analytics approach
title Predicting product sales in fashion retailing: a data analytics approach
spellingShingle Predicting product sales in fashion retailing: a data analytics approach
Nelson da Silva Alves
Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
title_short Predicting product sales in fashion retailing: a data analytics approach
title_full Predicting product sales in fashion retailing: a data analytics approach
title_fullStr Predicting product sales in fashion retailing: a data analytics approach
title_full_unstemmed Predicting product sales in fashion retailing: a data analytics approach
title_sort Predicting product sales in fashion retailing: a data analytics approach
author Nelson da Silva Alves
author_facet Nelson da Silva Alves
author_role author
dc.contributor.author.fl_str_mv Nelson da Silva Alves
dc.subject.por.fl_str_mv Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
topic Engenharia electrotécnica, electrónica e informática
Electrical engineering, Electronic engineering, Information engineering
description In the retail context, an erroneous determination of the amounts to buy of each article from the suppliers, either by excess or defect, can result in unnecessary costs of storage or lost sales, respectively. Both situations should be avoided by companies, which promotes the need to determine purchase quantities efficiently. Currently companies collect huge amounts of data referring to their sales and products' features. In the past, that information was seldom analyzed and integrated in the decision making process. However, the increase of the information processing capacity has promoted the use of data analytics as a means to obtain knowledge and support decision makers in achieving better business outcomes. Therefore, the development of models which use the different factors which influences sales and produces precise predictions of future sales represents a very promising strategy. The results obtained could be very valuable to the companies, as they enable companies to align the amount to buy from the suppliers with the potential sales. This project aims at exploring the use of data mining techniques to optimize the amounts to buy of each product sold by a fashion retail company. The project results in the development of a model that uses past sales data of the products with similar characteristics to predict the quantity the company will potentially sell from the new products. The project will use as a case study a Portuguese fashion retail company. To validate the model it will be used several linear regression measures to quantify model quality.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-10
2017-07-10T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/106489
TID:201801655
url https://hdl.handle.net/10216/106489
identifier_str_mv TID:201801655
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135561948069888