Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models

Detalhes bibliográficos
Autor(a) principal: Bentes, Carolina Alves
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/156038
Resumo: With an increasing demand for improvement and innovation in the field of microelectronics, flexible electronics, driven by applications that range from displays to medical devices, has gained much relevance in recent years. Thin film transistors (TFTs) are the main building block for flexible microelectronic systems, but a better understanding of the mechanical properties of the constituent thin film materials is necessary to design more reliable microelectronic devices to be used in mechanically harsh environments. This work aims to extract a set of mechanical properties of thin film materials used in flexible oxide TFTs and based on that, parameterize material models for Finite Elements Analysis (FEA). To acquire data for these material models, films from different materials are fabricated on silicon substrates. For assessing the impact of thickness and annealing process on the mechanical properties of the thin films, several samples of the same material are fabricated with distinct specifications. This study is divided into two workflows for extracting two distinct sets of parameters. For films composed of metals (Mo), semiconductors (IGZO) and dielectrics (Ta2O5 and Ta2O5/SiO2), the hardness and, as the main parameter, Young´s modulus, are determined by nanoindentation for describing linear elasticity. For the polymeric films (PI), timedependent parameters such as storage modulus, loss modulus and phase angle, which are necessary to describe viscoelasticity, are determined by nanoscale Dynamic Mechanical Analysis (nano-DMA). Based on these experimental results, the linear elastic and viscoelastic material models are parameterized for the Finite Element Method (FEM). Based on these FEM models, now relevant geometries could be simulated. Beyond that, following the methodology of the dissertation, further thin films used in oxide TFTs could be characterized which paves the way for the acquisition of data from other relevant materials and the obtaining of a complete description of the device for product development.
id RCAP_fca631941fd51963727100c9f917f9ff
oai_identifier_str oai:run.unl.pt:10362/156038
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Modelsflexible electronicsthin filmsmechanical propertiesoxide TFTsmaterial functionfinite element modellingDomínio/Área Científica::Engenharia e Tecnologia::NanotecnologiaWith an increasing demand for improvement and innovation in the field of microelectronics, flexible electronics, driven by applications that range from displays to medical devices, has gained much relevance in recent years. Thin film transistors (TFTs) are the main building block for flexible microelectronic systems, but a better understanding of the mechanical properties of the constituent thin film materials is necessary to design more reliable microelectronic devices to be used in mechanically harsh environments. This work aims to extract a set of mechanical properties of thin film materials used in flexible oxide TFTs and based on that, parameterize material models for Finite Elements Analysis (FEA). To acquire data for these material models, films from different materials are fabricated on silicon substrates. For assessing the impact of thickness and annealing process on the mechanical properties of the thin films, several samples of the same material are fabricated with distinct specifications. This study is divided into two workflows for extracting two distinct sets of parameters. For films composed of metals (Mo), semiconductors (IGZO) and dielectrics (Ta2O5 and Ta2O5/SiO2), the hardness and, as the main parameter, Young´s modulus, are determined by nanoindentation for describing linear elasticity. For the polymeric films (PI), timedependent parameters such as storage modulus, loss modulus and phase angle, which are necessary to describe viscoelasticity, are determined by nanoscale Dynamic Mechanical Analysis (nano-DMA). Based on these experimental results, the linear elastic and viscoelastic material models are parameterized for the Finite Element Method (FEM). Based on these FEM models, now relevant geometries could be simulated. Beyond that, following the methodology of the dissertation, further thin films used in oxide TFTs could be characterized which paves the way for the acquisition of data from other relevant materials and the obtaining of a complete description of the device for product development.Com uma procura crescente por melhoria e inovação no ramo da microeletrónica, a eletrónica flexível, impulsionada por aplicações que vão desde displays a dispositivos médicos, tem vindo a ganhar muita relevância nos últimos anos. Transístores de filme fino (TFTs) são o principal bloco de construção para sistemas microeletrónicos flexíveis. Mas uma melhor compreensão das propriedades mecânicas dos materiais constituintes de filme fino é necessária para projetar dispositivos microeletrónicos mais confiáveis para serem utilizados em ambientes mecanicamente desafiadores. Este trabalho visa extrair um conjunto de propriedades mecânicas de materiais de filmes finos usados em TFTs de óxidos flexíveis e, com base nestas, parametrizar modelos de materiais para Análise de Elementos Finitos. Para adquirir dados para esses modelos de materiais, filmes de diferentes materiais são fabricados em substratos de silício. Para avaliar o impacto de espessura e do processo de recozimento nas propriedades mecânicas dos filmes, várias amostras são fabricadas com especificações distintas. Este estudo é dividido em dois fluxos de trabalho para a extração de dois conjuntos distintos de parâmetros. Para filmes compostos de metais (Mo), semicondutores (IGZO) e dielétricos (Ta2O5 e Ta2O5/SiO2), a dureza e, como parâmetro principal, o módulo de Young, são determinados por nanoindentação para descrever a elasticidade linear. Para os filmes poliméricos (PI), parâmetros dependentes do tempo, como o módulo de armazenamento, o módulo viscoso e o ângulo de fase, necessários para descrever a viscoelasticidade, são determinados por Análise Mecânica Dinâmica em nanoescala (nano-DMA). Com base nesses resultados experimentais, modelos de materiais lineares elástico e viscoelástico são parametrizados para o Método dos Elementos Finitos (MEF). Com base nesses modelos MEF, geometrias relevantes podem agora ser simuladas. Além disso, seguindo a metodologia da dissertação, outros filmes finos usados em TFTs de óxidos podem ser caracterizados, o que abre caminho para a aquisição de dados de outros materiais relevantes e a obtenção de uma descrição completa do dispositivo para o desenvolvimento de produtos.Martins, RodrigoZlotnikov, IgorClausner, AndréRUNBentes, Carolina Alves2023-07-31T14:19:27Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/156038enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:38:26Zoai:run.unl.pt:10362/156038Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:56:14.668765Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
title Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
spellingShingle Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
Bentes, Carolina Alves
flexible electronics
thin films
mechanical properties
oxide TFTs
material function
finite element modelling
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
title_short Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
title_full Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
title_fullStr Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
title_full_unstemmed Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
title_sort Determination of Mechanical Properties of Thin Film Materials Used in Oxide TFTs Toward Advanced Material Models
author Bentes, Carolina Alves
author_facet Bentes, Carolina Alves
author_role author
dc.contributor.none.fl_str_mv Martins, Rodrigo
Zlotnikov, Igor
Clausner, André
RUN
dc.contributor.author.fl_str_mv Bentes, Carolina Alves
dc.subject.por.fl_str_mv flexible electronics
thin films
mechanical properties
oxide TFTs
material function
finite element modelling
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
topic flexible electronics
thin films
mechanical properties
oxide TFTs
material function
finite element modelling
Domínio/Área Científica::Engenharia e Tecnologia::Nanotecnologia
description With an increasing demand for improvement and innovation in the field of microelectronics, flexible electronics, driven by applications that range from displays to medical devices, has gained much relevance in recent years. Thin film transistors (TFTs) are the main building block for flexible microelectronic systems, but a better understanding of the mechanical properties of the constituent thin film materials is necessary to design more reliable microelectronic devices to be used in mechanically harsh environments. This work aims to extract a set of mechanical properties of thin film materials used in flexible oxide TFTs and based on that, parameterize material models for Finite Elements Analysis (FEA). To acquire data for these material models, films from different materials are fabricated on silicon substrates. For assessing the impact of thickness and annealing process on the mechanical properties of the thin films, several samples of the same material are fabricated with distinct specifications. This study is divided into two workflows for extracting two distinct sets of parameters. For films composed of metals (Mo), semiconductors (IGZO) and dielectrics (Ta2O5 and Ta2O5/SiO2), the hardness and, as the main parameter, Young´s modulus, are determined by nanoindentation for describing linear elasticity. For the polymeric films (PI), timedependent parameters such as storage modulus, loss modulus and phase angle, which are necessary to describe viscoelasticity, are determined by nanoscale Dynamic Mechanical Analysis (nano-DMA). Based on these experimental results, the linear elastic and viscoelastic material models are parameterized for the Finite Element Method (FEM). Based on these FEM models, now relevant geometries could be simulated. Beyond that, following the methodology of the dissertation, further thin films used in oxide TFTs could be characterized which paves the way for the acquisition of data from other relevant materials and the obtaining of a complete description of the device for product development.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
2022-12-01T00:00:00Z
2023-07-31T14:19:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/156038
url http://hdl.handle.net/10362/156038
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138148145430528