A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications

Detalhes bibliográficos
Autor(a) principal: Barreto, João P.
Data de Publicação: 2004
Outros Autores: Araújo, Helder
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/7639
https://doi.org/10.1023/B:VISI.0000013089.51664.b2
Resumo: An imaging system with a single effective viewpoint is called a central projection system. The conventional perspective camera is an example of central projection system. A catadioptric realization of omnidirectional vision combines reflective surfaces with lenses. Catadioptric systems with an unique projection center are also examples of central projection systems. Whenever an image is acquired, points in 3D space are mapped into points in the 2D image plane. The image formation process represents a transformation from R3 to R2, and mathematical models can be used to describe it. This paper discusses the definition of world coordinate systems that simplify the modeling of general central projection imaging. We show that an adequate choice of the world coordinate reference system can be highly advantageous. Such a choice does not imply that new information will be available in the images. Instead the geometric transformations will be represented in a common and more compact framework, while simultaneously enabling newer insights. The first part of the paper focuses on static imaging systems that include both perspective cameras and catadioptric systems. A systematic approach to select the world reference frame is presented. In particular we derive coordinate systems that satisfy two differential constraints (the “compactness” and the “decoupling” constraints). These coordinate systems have several advantages for the representation of the transformations between the 3D world and the image plane. The second part of the paper applies the derived mathematical framework to active tracking of moving targets. In applications of visual control of motion the relationship between motion in the scene and image motion must be established. In the case of active tracking of moving targets these relationships become more complex due to camera motion. Suitable world coordinate reference systems are defined for three distinct situations: perspective camera with planar translation motion, perspective camera with pan and tilt rotation motion, and catadioptric imaging system rotating around an axis going through the effective viewpoint and the camera center. Position and velocity equations relating image motion, camera motion and target 3D motion are derived and discussed. Control laws to perform active tracking of moving targets using visual information are established.
id RCAP_fcec916578ca737c1933326254196c46
oai_identifier_str oai:estudogeral.uc.pt:10316/7639
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging ApplicationsAn imaging system with a single effective viewpoint is called a central projection system. The conventional perspective camera is an example of central projection system. A catadioptric realization of omnidirectional vision combines reflective surfaces with lenses. Catadioptric systems with an unique projection center are also examples of central projection systems. Whenever an image is acquired, points in 3D space are mapped into points in the 2D image plane. The image formation process represents a transformation from R3 to R2, and mathematical models can be used to describe it. This paper discusses the definition of world coordinate systems that simplify the modeling of general central projection imaging. We show that an adequate choice of the world coordinate reference system can be highly advantageous. Such a choice does not imply that new information will be available in the images. Instead the geometric transformations will be represented in a common and more compact framework, while simultaneously enabling newer insights. The first part of the paper focuses on static imaging systems that include both perspective cameras and catadioptric systems. A systematic approach to select the world reference frame is presented. In particular we derive coordinate systems that satisfy two differential constraints (the “compactness” and the “decoupling” constraints). These coordinate systems have several advantages for the representation of the transformations between the 3D world and the image plane. The second part of the paper applies the derived mathematical framework to active tracking of moving targets. In applications of visual control of motion the relationship between motion in the scene and image motion must be established. In the case of active tracking of moving targets these relationships become more complex due to camera motion. Suitable world coordinate reference systems are defined for three distinct situations: perspective camera with planar translation motion, perspective camera with pan and tilt rotation motion, and catadioptric imaging system rotating around an axis going through the effective viewpoint and the camera center. Position and velocity equations relating image motion, camera motion and target 3D motion are derived and discussed. Control laws to perform active tracking of moving targets using visual information are established.2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7639http://hdl.handle.net/10316/7639https://doi.org/10.1023/B:VISI.0000013089.51664.b2engInternational Journal of Computer Vision. 57:1 (2004) 23-47Barreto, João P.Araújo, Helderinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T12:06:33Zoai:estudogeral.uc.pt:10316/7639Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:57:54.264157Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
title A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
spellingShingle A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
Barreto, João P.
title_short A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
title_full A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
title_fullStr A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
title_full_unstemmed A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
title_sort A General Framework for the Selection of World Coordinate Systems in Perspective and Catadioptric Imaging Applications
author Barreto, João P.
author_facet Barreto, João P.
Araújo, Helder
author_role author
author2 Araújo, Helder
author2_role author
dc.contributor.author.fl_str_mv Barreto, João P.
Araújo, Helder
description An imaging system with a single effective viewpoint is called a central projection system. The conventional perspective camera is an example of central projection system. A catadioptric realization of omnidirectional vision combines reflective surfaces with lenses. Catadioptric systems with an unique projection center are also examples of central projection systems. Whenever an image is acquired, points in 3D space are mapped into points in the 2D image plane. The image formation process represents a transformation from R3 to R2, and mathematical models can be used to describe it. This paper discusses the definition of world coordinate systems that simplify the modeling of general central projection imaging. We show that an adequate choice of the world coordinate reference system can be highly advantageous. Such a choice does not imply that new information will be available in the images. Instead the geometric transformations will be represented in a common and more compact framework, while simultaneously enabling newer insights. The first part of the paper focuses on static imaging systems that include both perspective cameras and catadioptric systems. A systematic approach to select the world reference frame is presented. In particular we derive coordinate systems that satisfy two differential constraints (the “compactness” and the “decoupling” constraints). These coordinate systems have several advantages for the representation of the transformations between the 3D world and the image plane. The second part of the paper applies the derived mathematical framework to active tracking of moving targets. In applications of visual control of motion the relationship between motion in the scene and image motion must be established. In the case of active tracking of moving targets these relationships become more complex due to camera motion. Suitable world coordinate reference systems are defined for three distinct situations: perspective camera with planar translation motion, perspective camera with pan and tilt rotation motion, and catadioptric imaging system rotating around an axis going through the effective viewpoint and the camera center. Position and velocity equations relating image motion, camera motion and target 3D motion are derived and discussed. Control laws to perform active tracking of moving targets using visual information are established.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/7639
http://hdl.handle.net/10316/7639
https://doi.org/10.1023/B:VISI.0000013089.51664.b2
url http://hdl.handle.net/10316/7639
https://doi.org/10.1023/B:VISI.0000013089.51664.b2
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Computer Vision. 57:1 (2004) 23-47
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133869292650496