Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Ana M. M.
Data de Publicação: 2021
Outros Autores: Rocha, Carolina P., Marques, João C., Gonçalves, Fernando J. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/100672
https://doi.org/10.1016/j.ecolind.2020.107303
Resumo: The lack of specificity of pesticides used for control of various organisms, even if efforts have been made to design formulations more species-specific, produce harmful effects on non-target organisms. Oxidative stress and lipid peroxidation are amongst the main known effects induced by pesticide exposure, besides eventual lethal toxicity, endangering organisms’ biomembranes integrity or compromising their activity through long-term exposure. Due to the general persistency of pesticides in the environment, these can easily be transported by water runoff. Pesticides used in agricultural fields are frequently transported to nearby freshwater systems, potentially affecting non-target organisms. Organophosphorus pesticides and carbamates are amongst the widely used classes of pesticides, and, despite being considered of rapid biodegradation, present a broad-spectrum of action, and the frequent transport of these contaminants to other systems may be harmful to non-intended species. Others, such as organochlorine pesticides, are highly persistent in the environment, posing a threat to non-target species for long periods. This is a matter of utter importance given that pesticides are known to impair numerous biological processes and inhibit the action of key enzymes in the response to xenobiotic-induced stress, potentiating oxidative stress and neurotoxicity, with potential irreversible effects. The study of the effect of pesticides has for long assessed exposure responses in a set of antioxidant and esterase enzymes, along trophic levels. The information is, however, more vast concerning photosynthetic organisms, macroinvertebrates and fish, with zooplankton appearing to be the group least studied. Given the ecological importance of zooplankton, further information regarding the response of this group to pesticide exposure could help detect early warning signs of potential threats to an ecosystem’s integrity and search for alternatives and solutions to prevent the harmful action of pesticides in non-target individuals, that escalate food chains. Nonetheless, the use of enzymes as biomarkers to assess the response of freshwater communities to stress induced by pesticides has for long proven to be an effective tool. Some constraints related to the consistency of organisms’ sensitivity and responses to pollutants may, however, lead to results not always straightforward, as a same pesticide may produce different enzymatic responses depending on the organism affected or to the environmental conditions. Thus, further studies using enzymes as biomarkers of pesticide exposure could provide more information and understanding to overcome the existing limitations and strengthen the applicability of enzymes in this context.
id RCAP_fcecbe796f25d65583d19111e22e1a15
oai_identifier_str oai:estudogeral.uc.pt:10316/100672
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A reviewAntioxidant responseAquatic speciesBioindicatorsEnzymesXenobioticsThe lack of specificity of pesticides used for control of various organisms, even if efforts have been made to design formulations more species-specific, produce harmful effects on non-target organisms. Oxidative stress and lipid peroxidation are amongst the main known effects induced by pesticide exposure, besides eventual lethal toxicity, endangering organisms’ biomembranes integrity or compromising their activity through long-term exposure. Due to the general persistency of pesticides in the environment, these can easily be transported by water runoff. Pesticides used in agricultural fields are frequently transported to nearby freshwater systems, potentially affecting non-target organisms. Organophosphorus pesticides and carbamates are amongst the widely used classes of pesticides, and, despite being considered of rapid biodegradation, present a broad-spectrum of action, and the frequent transport of these contaminants to other systems may be harmful to non-intended species. Others, such as organochlorine pesticides, are highly persistent in the environment, posing a threat to non-target species for long periods. This is a matter of utter importance given that pesticides are known to impair numerous biological processes and inhibit the action of key enzymes in the response to xenobiotic-induced stress, potentiating oxidative stress and neurotoxicity, with potential irreversible effects. The study of the effect of pesticides has for long assessed exposure responses in a set of antioxidant and esterase enzymes, along trophic levels. The information is, however, more vast concerning photosynthetic organisms, macroinvertebrates and fish, with zooplankton appearing to be the group least studied. Given the ecological importance of zooplankton, further information regarding the response of this group to pesticide exposure could help detect early warning signs of potential threats to an ecosystem’s integrity and search for alternatives and solutions to prevent the harmful action of pesticides in non-target individuals, that escalate food chains. Nonetheless, the use of enzymes as biomarkers to assess the response of freshwater communities to stress induced by pesticides has for long proven to be an effective tool. Some constraints related to the consistency of organisms’ sensitivity and responses to pollutants may, however, lead to results not always straightforward, as a same pesticide may produce different enzymatic responses depending on the organism affected or to the environmental conditions. Thus, further studies using enzymes as biomarkers of pesticide exposure could provide more information and understanding to overcome the existing limitations and strengthen the applicability of enzymes in this context.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100672http://hdl.handle.net/10316/100672https://doi.org/10.1016/j.ecolind.2020.107303eng1470160XGonçalves, Ana M. M.Rocha, Carolina P.Marques, João C.Gonçalves, Fernando J. M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-07-08T20:37:33Zoai:estudogeral.uc.pt:10316/100672Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:00.544826Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
title Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
spellingShingle Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
Gonçalves, Ana M. M.
Antioxidant response
Aquatic species
Bioindicators
Enzymes
Xenobiotics
title_short Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
title_full Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
title_fullStr Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
title_full_unstemmed Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
title_sort Enzymes as useful biomarkers to assess the response of freshwater communities to pesticide exposure – A review
author Gonçalves, Ana M. M.
author_facet Gonçalves, Ana M. M.
Rocha, Carolina P.
Marques, João C.
Gonçalves, Fernando J. M.
author_role author
author2 Rocha, Carolina P.
Marques, João C.
Gonçalves, Fernando J. M.
author2_role author
author
author
dc.contributor.author.fl_str_mv Gonçalves, Ana M. M.
Rocha, Carolina P.
Marques, João C.
Gonçalves, Fernando J. M.
dc.subject.por.fl_str_mv Antioxidant response
Aquatic species
Bioindicators
Enzymes
Xenobiotics
topic Antioxidant response
Aquatic species
Bioindicators
Enzymes
Xenobiotics
description The lack of specificity of pesticides used for control of various organisms, even if efforts have been made to design formulations more species-specific, produce harmful effects on non-target organisms. Oxidative stress and lipid peroxidation are amongst the main known effects induced by pesticide exposure, besides eventual lethal toxicity, endangering organisms’ biomembranes integrity or compromising their activity through long-term exposure. Due to the general persistency of pesticides in the environment, these can easily be transported by water runoff. Pesticides used in agricultural fields are frequently transported to nearby freshwater systems, potentially affecting non-target organisms. Organophosphorus pesticides and carbamates are amongst the widely used classes of pesticides, and, despite being considered of rapid biodegradation, present a broad-spectrum of action, and the frequent transport of these contaminants to other systems may be harmful to non-intended species. Others, such as organochlorine pesticides, are highly persistent in the environment, posing a threat to non-target species for long periods. This is a matter of utter importance given that pesticides are known to impair numerous biological processes and inhibit the action of key enzymes in the response to xenobiotic-induced stress, potentiating oxidative stress and neurotoxicity, with potential irreversible effects. The study of the effect of pesticides has for long assessed exposure responses in a set of antioxidant and esterase enzymes, along trophic levels. The information is, however, more vast concerning photosynthetic organisms, macroinvertebrates and fish, with zooplankton appearing to be the group least studied. Given the ecological importance of zooplankton, further information regarding the response of this group to pesticide exposure could help detect early warning signs of potential threats to an ecosystem’s integrity and search for alternatives and solutions to prevent the harmful action of pesticides in non-target individuals, that escalate food chains. Nonetheless, the use of enzymes as biomarkers to assess the response of freshwater communities to stress induced by pesticides has for long proven to be an effective tool. Some constraints related to the consistency of organisms’ sensitivity and responses to pollutants may, however, lead to results not always straightforward, as a same pesticide may produce different enzymatic responses depending on the organism affected or to the environmental conditions. Thus, further studies using enzymes as biomarkers of pesticide exposure could provide more information and understanding to overcome the existing limitations and strengthen the applicability of enzymes in this context.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/100672
http://hdl.handle.net/10316/100672
https://doi.org/10.1016/j.ecolind.2020.107303
url http://hdl.handle.net/10316/100672
https://doi.org/10.1016/j.ecolind.2020.107303
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1470160X
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1817553634432385024