Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/22954 |
Resumo: | Numerical solutions to Newtons equations of motion for chaotic self gravitating systems of more than 2 bodies are often regarded to be irreversible. This is due to the exponential growth of errors introduced by the integration scheme and the numerical round-off in the least significant figure. This secular growth of error is sometimes attributed to the increase in entropy of the system even though Newton’s equations of motion are strictly time reversible. We demonstrate that when numerical errors are reduced to below the physical perturbation and its exponential growth during integration the microscopic reversibility is retrieved. Time reversibility itself is not a guarantee for a definitive solution to the chaotic N-body problem. However, time reversible algorithms may be used to find initial conditions for which perturbed trajectories converge rather than diverge. The ability to calculate such a converging pair of solutions is a striking illustration which shows that it is possible to compute a definitive solution to a highly unstable problem. This works as follows: If you (i) use a code which is capable of producing a definitive solution (and which will therefore handle converging pairs of solutions correctly), (ii) use it to study the statistical result of some other problem, and then (iii) find that some other code produces a solution with statistical properties which are indistinguishable from those of the definitive solution, then solution may be deemed veracious. |
id |
RCAP_fd209cc61d08c0517e4fe11e67648a81 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/22954 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergenceNewtonian dynamicsN-body integrationChaosNumerical solutions to Newtons equations of motion for chaotic self gravitating systems of more than 2 bodies are often regarded to be irreversible. This is due to the exponential growth of errors introduced by the integration scheme and the numerical round-off in the least significant figure. This secular growth of error is sometimes attributed to the increase in entropy of the system even though Newton’s equations of motion are strictly time reversible. We demonstrate that when numerical errors are reduced to below the physical perturbation and its exponential growth during integration the microscopic reversibility is retrieved. Time reversibility itself is not a guarantee for a definitive solution to the chaotic N-body problem. However, time reversible algorithms may be used to find initial conditions for which perturbed trajectories converge rather than diverge. The ability to calculate such a converging pair of solutions is a striking illustration which shows that it is possible to compute a definitive solution to a highly unstable problem. This works as follows: If you (i) use a code which is capable of producing a definitive solution (and which will therefore handle converging pairs of solutions correctly), (ii) use it to study the statistical result of some other problem, and then (iii) find that some other code produces a solution with statistical properties which are indistinguishable from those of the definitive solution, then solution may be deemed veracious.Elsevier2018-082018-08-01T00:00:00Z2019-08-01T15:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/22954eng1007-570410.1016/j.cnsns.2018.02.002Portegies Zwart, SimonBoekholt, Tjardainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:44:50Zoai:ria.ua.pt:10773/22954Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:56:55.322324Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
title |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
spellingShingle |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence Portegies Zwart, Simon Newtonian dynamics N-body integration Chaos |
title_short |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
title_full |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
title_fullStr |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
title_full_unstemmed |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
title_sort |
Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence |
author |
Portegies Zwart, Simon |
author_facet |
Portegies Zwart, Simon Boekholt, Tjarda |
author_role |
author |
author2 |
Boekholt, Tjarda |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Portegies Zwart, Simon Boekholt, Tjarda |
dc.subject.por.fl_str_mv |
Newtonian dynamics N-body integration Chaos |
topic |
Newtonian dynamics N-body integration Chaos |
description |
Numerical solutions to Newtons equations of motion for chaotic self gravitating systems of more than 2 bodies are often regarded to be irreversible. This is due to the exponential growth of errors introduced by the integration scheme and the numerical round-off in the least significant figure. This secular growth of error is sometimes attributed to the increase in entropy of the system even though Newton’s equations of motion are strictly time reversible. We demonstrate that when numerical errors are reduced to below the physical perturbation and its exponential growth during integration the microscopic reversibility is retrieved. Time reversibility itself is not a guarantee for a definitive solution to the chaotic N-body problem. However, time reversible algorithms may be used to find initial conditions for which perturbed trajectories converge rather than diverge. The ability to calculate such a converging pair of solutions is a striking illustration which shows that it is possible to compute a definitive solution to a highly unstable problem. This works as follows: If you (i) use a code which is capable of producing a definitive solution (and which will therefore handle converging pairs of solutions correctly), (ii) use it to study the statistical result of some other problem, and then (iii) find that some other code produces a solution with statistical properties which are indistinguishable from those of the definitive solution, then solution may be deemed veracious. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-08 2018-08-01T00:00:00Z 2019-08-01T15:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/22954 |
url |
http://hdl.handle.net/10773/22954 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1007-5704 10.1016/j.cnsns.2018.02.002 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137623185293312 |