Towards patient-specific carbohydrate counting accuracy: an in silico study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35365 |
Resumo: | Type 1 diabetes mellitus patients on intensive insulin therapy use advanced carbohydrate counting to proper dose prandial insulin. Therefore, the patient’s ability to accurately estimate the meal’s carbohydrate content is paramount. However, despite its significance, several studies show that the patient’s ability to estimates the meal’s carbohydrate content is far from ideal and identify the need for continuous education on carbohydrate counting. In this context, the authors have proposed in previous works an analytic method to determine the maximum error to the carbohydrate counting regarding each patient’s insulin-to-carb ratio and the insulin sensitivity factor. This maximum can be of great significance to design patient-specific educational programs and to define learning outcomes according to the specific characteristics of each patient. This work presents a methodology and conditions to assess the previously proposed method, using the FDA-approved University of Virginia(UVA)/Padova Type 1 Diabetes Simulator. |
id |
RCAP_fd2ba3f1e50d8f9b8e86a476baae702f |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35365 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Towards patient-specific carbohydrate counting accuracy: an in silico studyType 1 diabetes mellitus patients on intensive insulin therapy use advanced carbohydrate counting to proper dose prandial insulin. Therefore, the patient’s ability to accurately estimate the meal’s carbohydrate content is paramount. However, despite its significance, several studies show that the patient’s ability to estimates the meal’s carbohydrate content is far from ideal and identify the need for continuous education on carbohydrate counting. In this context, the authors have proposed in previous works an analytic method to determine the maximum error to the carbohydrate counting regarding each patient’s insulin-to-carb ratio and the insulin sensitivity factor. This maximum can be of great significance to design patient-specific educational programs and to define learning outcomes according to the specific characteristics of each patient. This work presents a methodology and conditions to assess the previously proposed method, using the FDA-approved University of Virginia(UVA)/Padova Type 1 Diabetes Simulator.AIP Publishing2023-04-06T00:00:00Z2022-04-06T00:00:00Z2022-04-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35365eng0094-243X10.1063/5.0081330Abreu, CarlosMiranda, FranciscoFelgueiras, Paulainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:40:40Zoai:ria.ua.pt:10773/35365Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:40:40Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
title |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
spellingShingle |
Towards patient-specific carbohydrate counting accuracy: an in silico study Abreu, Carlos |
title_short |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
title_full |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
title_fullStr |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
title_full_unstemmed |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
title_sort |
Towards patient-specific carbohydrate counting accuracy: an in silico study |
author |
Abreu, Carlos |
author_facet |
Abreu, Carlos Miranda, Francisco Felgueiras, Paula |
author_role |
author |
author2 |
Miranda, Francisco Felgueiras, Paula |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Abreu, Carlos Miranda, Francisco Felgueiras, Paula |
description |
Type 1 diabetes mellitus patients on intensive insulin therapy use advanced carbohydrate counting to proper dose prandial insulin. Therefore, the patient’s ability to accurately estimate the meal’s carbohydrate content is paramount. However, despite its significance, several studies show that the patient’s ability to estimates the meal’s carbohydrate content is far from ideal and identify the need for continuous education on carbohydrate counting. In this context, the authors have proposed in previous works an analytic method to determine the maximum error to the carbohydrate counting regarding each patient’s insulin-to-carb ratio and the insulin sensitivity factor. This maximum can be of great significance to design patient-specific educational programs and to define learning outcomes according to the specific characteristics of each patient. This work presents a methodology and conditions to assess the previously proposed method, using the FDA-approved University of Virginia(UVA)/Padova Type 1 Diabetes Simulator. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-06T00:00:00Z 2022-04-06 2023-04-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35365 |
url |
http://hdl.handle.net/10773/35365 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0094-243X 10.1063/5.0081330 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
AIP Publishing |
publisher.none.fl_str_mv |
AIP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543829290483712 |