Modelling preferential sampling in time
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/73238 |
Resumo: | Preferential sampling in time occurs when there is stochastic dependence between the process being modeled and the times of the observations. Examples occur in fisheries if the data are observed when the resource is available, in sensoring when sensors keep only some records in order to save memory and in clinical studies, when a worse clinical condition leads to more frequent observations of the patient. In all such situations the observation times are informative on the underlying process. To make inference in time series observed under Preferential Sampling we propose, in this work, a numerical method based on a Laplace approach to optimize the likelihood and to approximate the underlying process we adopt a technique based on stochastic partial differential equation. Numerical studies with simulated and real data sets are performed to illustrate the benefits of the proposed approach. |
id |
RCAP_fe0d5df43268df71f9dba5f991866f9c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/73238 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling preferential sampling in timeContinuous time autoregressive processLaplacePreferential samplingSPDETime seriesCiências Naturais::MatemáticasPreferential sampling in time occurs when there is stochastic dependence between the process being modeled and the times of the observations. Examples occur in fisheries if the data are observed when the resource is available, in sensoring when sensors keep only some records in order to save memory and in clinical studies, when a worse clinical condition leads to more frequent observations of the patient. In all such situations the observation times are informative on the underlying process. To make inference in time series observed under Preferential Sampling we propose, in this work, a numerical method based on a Laplace approach to optimize the likelihood and to approximate the underlying process we adopt a technique based on stochastic partial differential equation. Numerical studies with simulated and real data sets are performed to illustrate the benefits of the proposed approach.The authors acknowledge Center for Research & Development in Mathematics and Applications of Aveiro University within project UID/MAT/04106/2019 and the project PTDC/MAT-STA/28243/2017.Sociedad de Estadística e Investigación Operativa (SEIO)Universidade do MinhoMonteiro, AndreiaMenezes, RaquelSilva, Maria Eduarda2019-012019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/73238eng1889-3805info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:59:34Zoai:repositorium.sdum.uminho.pt:1822/73238Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:59:34Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling preferential sampling in time |
title |
Modelling preferential sampling in time |
spellingShingle |
Modelling preferential sampling in time Monteiro, Andreia Continuous time autoregressive process Laplace Preferential sampling SPDE Time series Ciências Naturais::Matemáticas |
title_short |
Modelling preferential sampling in time |
title_full |
Modelling preferential sampling in time |
title_fullStr |
Modelling preferential sampling in time |
title_full_unstemmed |
Modelling preferential sampling in time |
title_sort |
Modelling preferential sampling in time |
author |
Monteiro, Andreia |
author_facet |
Monteiro, Andreia Menezes, Raquel Silva, Maria Eduarda |
author_role |
author |
author2 |
Menezes, Raquel Silva, Maria Eduarda |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Monteiro, Andreia Menezes, Raquel Silva, Maria Eduarda |
dc.subject.por.fl_str_mv |
Continuous time autoregressive process Laplace Preferential sampling SPDE Time series Ciências Naturais::Matemáticas |
topic |
Continuous time autoregressive process Laplace Preferential sampling SPDE Time series Ciências Naturais::Matemáticas |
description |
Preferential sampling in time occurs when there is stochastic dependence between the process being modeled and the times of the observations. Examples occur in fisheries if the data are observed when the resource is available, in sensoring when sensors keep only some records in order to save memory and in clinical studies, when a worse clinical condition leads to more frequent observations of the patient. In all such situations the observation times are informative on the underlying process. To make inference in time series observed under Preferential Sampling we propose, in this work, a numerical method based on a Laplace approach to optimize the likelihood and to approximate the underlying process we adopt a technique based on stochastic partial differential equation. Numerical studies with simulated and real data sets are performed to illustrate the benefits of the proposed approach. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/73238 |
url |
http://hdl.handle.net/1822/73238 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1889-3805 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad de Estadística e Investigación Operativa (SEIO) |
publisher.none.fl_str_mv |
Sociedad de Estadística e Investigación Operativa (SEIO) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544812127059968 |