A Language Modeling Approach for the Classification of Audio Music
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Relatório |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10451/14205 |
Resumo: | The purpose of this paper is to present a method for the classification of musical pieces based on a language modeling approach. The method does not require any metadata and is used with raw audio format. It consists in 1) transforming music data into a sequence of symbols 2) building a model for each category by estimating n-grams from the sequences of symbols derived from the training set. The results obtained on three audio datasets show that, providing the amount of data is sufficient for estimating the transitions probabilities of the model, the approach performs very well. The performance achieved with the ISMIR 2004 Genre classification dataset is, to our knowledge, one of the best published in the literature. |
id |
RCAP_ff4fad7ba0db7b392320384caf4a7e38 |
---|---|
oai_identifier_str |
oai:repositorio.ul.pt:10451/14205 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A Language Modeling Approach for the Classification of Audio MusicMachine LearningMusic Information RetrievalThe purpose of this paper is to present a method for the classification of musical pieces based on a language modeling approach. The method does not require any metadata and is used with raw audio format. It consists in 1) transforming music data into a sequence of symbols 2) building a model for each category by estimating n-grams from the sequences of symbols derived from the training set. The results obtained on three audio datasets show that, providing the amount of data is sufficient for estimating the transitions probabilities of the model, the approach performs very well. The performance achieved with the ISMIR 2004 Genre classification dataset is, to our knowledge, one of the best published in the literature.FCTRepositório da Universidade de LisboaMarques, GonçaloLanglois, Thibault2009-03-19T17:49:52Z2009-032009-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/reportapplication/pdfhttp://hdl.handle.net/10451/14205enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-08T15:59:52Zoai:repositorio.ul.pt:10451/14205Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:36:02.147461Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A Language Modeling Approach for the Classification of Audio Music |
title |
A Language Modeling Approach for the Classification of Audio Music |
spellingShingle |
A Language Modeling Approach for the Classification of Audio Music Marques, Gonçalo Machine Learning Music Information Retrieval |
title_short |
A Language Modeling Approach for the Classification of Audio Music |
title_full |
A Language Modeling Approach for the Classification of Audio Music |
title_fullStr |
A Language Modeling Approach for the Classification of Audio Music |
title_full_unstemmed |
A Language Modeling Approach for the Classification of Audio Music |
title_sort |
A Language Modeling Approach for the Classification of Audio Music |
author |
Marques, Gonçalo |
author_facet |
Marques, Gonçalo Langlois, Thibault |
author_role |
author |
author2 |
Langlois, Thibault |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Repositório da Universidade de Lisboa |
dc.contributor.author.fl_str_mv |
Marques, Gonçalo Langlois, Thibault |
dc.subject.por.fl_str_mv |
Machine Learning Music Information Retrieval |
topic |
Machine Learning Music Information Retrieval |
description |
The purpose of this paper is to present a method for the classification of musical pieces based on a language modeling approach. The method does not require any metadata and is used with raw audio format. It consists in 1) transforming music data into a sequence of symbols 2) building a model for each category by estimating n-grams from the sequences of symbols derived from the training set. The results obtained on three audio datasets show that, providing the amount of data is sufficient for estimating the transitions probabilities of the model, the approach performs very well. The performance achieved with the ISMIR 2004 Genre classification dataset is, to our knowledge, one of the best published in the literature. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-03-19T17:49:52Z 2009-03 2009-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/report |
format |
report |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/14205 |
url |
http://hdl.handle.net/10451/14205 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134258634162176 |