Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power

Detalhes bibliográficos
Autor(a) principal: Tascikaraoglu,A
Data de Publicação: 2016
Outros Autores: Sanandaji,BM, Chicco,G, Cocina,V, Spertino,F, Erdinc,O, Paterakis,NG, João Catalão
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.inesctec.pt/handle/123456789/4817
http://dx.doi.org/10.1109/tste.2016.2544929
Resumo: This paper presents a solar power forecasting scheme, which uses spatial and temporal time series data along with a photovoltaic (PV) power conversion model. The PV conversion model uses the forecast of three different variables, namely, irradiance on the tilted plane, ambient temperature, and wind speed, in order to estimate the power produced by a PV plant at the grid connection terminals. The forecast values are obtained using a spatio-temporal method that uses the data recorded from a target meteorological station as well as data of its surrounding stations. The proposed forecasting method exploits the sparsity of correlations between time series data in a collection of stations. The performance of both the PV conversion model and the spatio-temporal algorithm is evaluated using high-resolution real data recorded in various locations in Italy. Comparison with other benchmark methods illustrates that the proposed method significantly improves the solar power forecasts, particularly over short-term horizons.
id RCAP_fff64f2651570c95c6ccde9afd4e5b44
oai_identifier_str oai:repositorio.inesctec.pt:123456789/4817
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic PowerThis paper presents a solar power forecasting scheme, which uses spatial and temporal time series data along with a photovoltaic (PV) power conversion model. The PV conversion model uses the forecast of three different variables, namely, irradiance on the tilted plane, ambient temperature, and wind speed, in order to estimate the power produced by a PV plant at the grid connection terminals. The forecast values are obtained using a spatio-temporal method that uses the data recorded from a target meteorological station as well as data of its surrounding stations. The proposed forecasting method exploits the sparsity of correlations between time series data in a collection of stations. The performance of both the PV conversion model and the spatio-temporal algorithm is evaluated using high-resolution real data recorded in various locations in Italy. Comparison with other benchmark methods illustrates that the proposed method significantly improves the solar power forecasts, particularly over short-term horizons.2017-12-22T17:58:44Z2016-01-01T00:00:00Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4817http://dx.doi.org/10.1109/tste.2016.2544929engTascikaraoglu,ASanandaji,BMChicco,GCocina,VSpertino,FErdinc,OPaterakis,NGJoão Catalãoinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-05-15T10:20:44Zoai:repositorio.inesctec.pt:123456789/4817Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:53:34.299175Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
title Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
spellingShingle Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
Tascikaraoglu,A
title_short Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
title_full Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
title_fullStr Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
title_full_unstemmed Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
title_sort Compressive Spatio-Temporal Forecasting of Meteorological Quantities and Photovoltaic Power
author Tascikaraoglu,A
author_facet Tascikaraoglu,A
Sanandaji,BM
Chicco,G
Cocina,V
Spertino,F
Erdinc,O
Paterakis,NG
João Catalão
author_role author
author2 Sanandaji,BM
Chicco,G
Cocina,V
Spertino,F
Erdinc,O
Paterakis,NG
João Catalão
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Tascikaraoglu,A
Sanandaji,BM
Chicco,G
Cocina,V
Spertino,F
Erdinc,O
Paterakis,NG
João Catalão
description This paper presents a solar power forecasting scheme, which uses spatial and temporal time series data along with a photovoltaic (PV) power conversion model. The PV conversion model uses the forecast of three different variables, namely, irradiance on the tilted plane, ambient temperature, and wind speed, in order to estimate the power produced by a PV plant at the grid connection terminals. The forecast values are obtained using a spatio-temporal method that uses the data recorded from a target meteorological station as well as data of its surrounding stations. The proposed forecasting method exploits the sparsity of correlations between time series data in a collection of stations. The performance of both the PV conversion model and the spatio-temporal algorithm is evaluated using high-resolution real data recorded in various locations in Italy. Comparison with other benchmark methods illustrates that the proposed method significantly improves the solar power forecasts, particularly over short-term horizons.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2017-12-22T17:58:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/4817
http://dx.doi.org/10.1109/tste.2016.2544929
url http://repositorio.inesctec.pt/handle/123456789/4817
http://dx.doi.org/10.1109/tste.2016.2544929
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131609782288384