Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Matéria (Rio de Janeiro. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300714 |
Resumo: | ABSTRACT In this research paper an analysis concerning the evolution of crystallographic texture during hot rolling processing of low carbon steel is presented. The study was performed on a steel sheet with an initial thickness of 1.9 mm used in the process of cold rolling. In order to assess the differences between tensile and compressive deformation, a 90˚ cold bending was carried out in this specimen. Texture evolution analysis greatly helps to assess the effect of some mechanical properties, particularly formability. The material was annealed under different conditions of time and temperature using an inert atmosphere. The chemical composition was determined by optical emission spectrometry. The study of crystallographic texture present in this steel was performed using the electron backscatter diffraction (EBSD) technique by means of OIM (Orientation Imaging Microscopy) mapping, inverse pole figures and orientation distribution functions (ODFs). Electron diffraction Backscattered (EBSD) is a technique that allows to detect and analyze information crystallographic on the surface of a sample which is observed by scanning electron microscope (SEM). An analysis of the effect of processing parameters and differences between tensile and compressive deformation on the microstructure and crystallographic texture changes in these materials is presented. The results are discussed in terms of both the resulting anisotropy after the annealing treatment and the primary fibers founded by this technique. |
id |
RLAM-1_1718f45d9084beda97c832e7d1354ff5 |
---|---|
oai_identifier_str |
oai:scielo:S1517-70762015000300714 |
network_acronym_str |
RLAM-1 |
network_name_str |
Matéria (Rio de Janeiro. Online) |
repository_id_str |
|
spelling |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steelsAnnealingEBSDCrystallographic TextureODF 's.ABSTRACT In this research paper an analysis concerning the evolution of crystallographic texture during hot rolling processing of low carbon steel is presented. The study was performed on a steel sheet with an initial thickness of 1.9 mm used in the process of cold rolling. In order to assess the differences between tensile and compressive deformation, a 90˚ cold bending was carried out in this specimen. Texture evolution analysis greatly helps to assess the effect of some mechanical properties, particularly formability. The material was annealed under different conditions of time and temperature using an inert atmosphere. The chemical composition was determined by optical emission spectrometry. The study of crystallographic texture present in this steel was performed using the electron backscatter diffraction (EBSD) technique by means of OIM (Orientation Imaging Microscopy) mapping, inverse pole figures and orientation distribution functions (ODFs). Electron diffraction Backscattered (EBSD) is a technique that allows to detect and analyze information crystallographic on the surface of a sample which is observed by scanning electron microscope (SEM). An analysis of the effect of processing parameters and differences between tensile and compressive deformation on the microstructure and crystallographic texture changes in these materials is presented. The results are discussed in terms of both the resulting anisotropy after the annealing treatment and the primary fibers founded by this technique.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300714Matéria (Rio de Janeiro) v.20 n.3 2015reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/S1517-707620150003.0075info:eu-repo/semantics/openAccessCastruita Ávila,Laura GuadalupeGarcia Pastor,FranciscoCastro Román,Manuel de Jesuseng2015-10-21T00:00:00Zoai:scielo:S1517-70762015000300714Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2015-10-21T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false |
dc.title.none.fl_str_mv |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
title |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
spellingShingle |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels Castruita Ávila,Laura Guadalupe Annealing EBSD Crystallographic Texture ODF 's. |
title_short |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
title_full |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
title_fullStr |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
title_full_unstemmed |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
title_sort |
Evolution of texture and microstructure during thermo-mechanical processingin ultrathin low carbon steels |
author |
Castruita Ávila,Laura Guadalupe |
author_facet |
Castruita Ávila,Laura Guadalupe Garcia Pastor,Francisco Castro Román,Manuel de Jesus |
author_role |
author |
author2 |
Garcia Pastor,Francisco Castro Román,Manuel de Jesus |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Castruita Ávila,Laura Guadalupe Garcia Pastor,Francisco Castro Román,Manuel de Jesus |
dc.subject.por.fl_str_mv |
Annealing EBSD Crystallographic Texture ODF 's. |
topic |
Annealing EBSD Crystallographic Texture ODF 's. |
description |
ABSTRACT In this research paper an analysis concerning the evolution of crystallographic texture during hot rolling processing of low carbon steel is presented. The study was performed on a steel sheet with an initial thickness of 1.9 mm used in the process of cold rolling. In order to assess the differences between tensile and compressive deformation, a 90˚ cold bending was carried out in this specimen. Texture evolution analysis greatly helps to assess the effect of some mechanical properties, particularly formability. The material was annealed under different conditions of time and temperature using an inert atmosphere. The chemical composition was determined by optical emission spectrometry. The study of crystallographic texture present in this steel was performed using the electron backscatter diffraction (EBSD) technique by means of OIM (Orientation Imaging Microscopy) mapping, inverse pole figures and orientation distribution functions (ODFs). Electron diffraction Backscattered (EBSD) is a technique that allows to detect and analyze information crystallographic on the surface of a sample which is observed by scanning electron microscope (SEM). An analysis of the effect of processing parameters and differences between tensile and compressive deformation on the microstructure and crystallographic texture changes in these materials is presented. The results are discussed in terms of both the resulting anisotropy after the annealing treatment and the primary fibers founded by this technique. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300714 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762015000300714 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1517-707620150003.0075 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
dc.source.none.fl_str_mv |
Matéria (Rio de Janeiro) v.20 n.3 2015 reponame:Matéria (Rio de Janeiro. Online) instname:Matéria (Rio de Janeiro. Online) instacron:RLAM |
instname_str |
Matéria (Rio de Janeiro. Online) |
instacron_str |
RLAM |
institution |
RLAM |
reponame_str |
Matéria (Rio de Janeiro. Online) |
collection |
Matéria (Rio de Janeiro. Online) |
repository.name.fl_str_mv |
Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online) |
repository.mail.fl_str_mv |
||materia@labh2.coppe.ufrj.br |
_version_ |
1752126688854016000 |